Что такое реактивная мощность? Компенсация реактивной мощности. Расчет реактивной мощности. Еще раз про мощность: активную, реактивную, полную (P, Q, S), а также коэффициент мощности (PF)

Активная мощность (P)

Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть

потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.

Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:

В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.

Формулы для активной мощности

P = U I - в цепях постоянного тока

P = U I cosθ - в однофазных цепях переменного тока

P = √3 U L I L cosθ - в трёхфазных цепях переменного тока

P = 3 U Ph I Ph cosθ

P = √ (S 2 – Q 2) или

P =√ (ВА 2 – вар 2) или

Активная мощность = √ (Полная мощность 2 – Реактивная мощность 2) или

кВт = √ (кВА 2 – квар 2)

Реактивная мощность (Q)

Также её мощно было бы назвать бесполезной или безваттной мощностью.

Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).

Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.

Реактивная мощность определяется, как

и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.

Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.

Формулы для реактивной мощности

Реактивная мощность = √ (Полная мощность 2 – Активная мощность 2)

вар =√ (ВА 2 – P 2)

квар = √ (кВА 2 – кВт 2)

Полная мощность (S)

Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.

Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.

Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.

Формула для полной мощности

Полная мощность = √ (Активная мощность 2 + Реактивная мощность 2)

kUA = √(kW 2 + kUAR 2)

Следует заметить, что:

  • резистор потребляет активную мощность и отдаёт её в форме тепла и света.
  • индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
  • конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.

Для энергетиков предприятий и крупных торговых центров сомнений в существовании реактивной энергии нет. Ежемесячные счета и вполне реальные деньги, которые уходят на оплату реактивной электроэнергии , убеждают в реальности ее существования. Но некоторые электротехники всерьез, с математическими выкладками, доказывают, что данный тип электроэнергии фикция, что разделение электрической энергии на активную и реактивную составляющие искусственно.

Давайте попробуем и мы разобраться в этом вопросе, тем более, что на незнании отличий разных видов электроэнергии спекулируют создатели . Обещая огромные проценты , они сознательно или по незнанию подменяют один вид электрической энергии другим.

Начнем с понятий активной и реактивной электроэнергии. Не вдаваясь в дебри формул электротехники, можно определить активную энергию как ту, которая совершает работу: нагревает пищу на электроплитах, освещает ваше помещение, охлаждает воздух с помощью кондиционера. А реактивная электроэнергия создает необходимые условия для совершения подобной работы. Не будет реактивной энергии, и двигатели не смогут вращаться, холодильник не будет работать. В ваше помещение не поступит напряжение величиной 220 Вольт, так как ни один силовой трансформатор не работает без потребления реактивной электроэнергии.

Если на осциллографе одновременно наблюдать сигналы тока и напряжения, то две эти синусоиды всегда имеют сдвиг относительно друг друга на величину, называемую фазовым углом . Вот этот сдвиг и характеризует вклад реактивной энергии в полную энергию, потребляемую нагрузкой. Измеряя только ток в нагрузке, выделить реактивную часть энергии невозможно.

Учитывая, что реактивная энергия не совершает работы, ее можно вырабатывать на месте потребления. Для этого служат конденсаторы. Дело в том, что катушки и конденсаторы потребляют различные виды реактивной энергии: индуктивную и емкостную соответственно. Они сдвигают кривую тока по отношению к напряжению в противоположные стороны.

В силу этих обстоятельств конденсатор можно считать потребителем емкостной энергии или генератором индуктивной. Для двигателя, потребляющего индуктивную энергию, конденсатор, расположенный рядом, может стать ее источником. Такая обратимость возможна только для реактивных элементов схемы, не совершающих работу. Для активной энергии подобная обратимость не существует: ее генерация связана с затратами топлива. Ведь прежде чем совершить работу, нужно затратить энергию.

В бытовых условиях за реактивную энергию электропередающие организации плату не изымают, и бытовой счетчик считает только активную составляющую электрической энергии. Совершенно другая ситуация на крупных предприятиях: большое количество электродвигателей, сварочных аппаратов и трансформаторов, для работы которых требуется реактивная энергия, создают дополнительную нагрузку на линии электропередач. При этом растет ток и тепловые потери уже активной энергии.

В этих случаях потребление реактивной энергии учитывается счетчиком и отдельно оплачивается. Стоимость реактивной электроэнергии меньше стоимости активной, но при больших объемах ее потребления платежи могут быть очень значительными. Кроме этого, за потребление реактивной энергии сверх оговоренных значений, накладываются штрафы. Поэтому экономически выгодно для подобных предприятий становится выработка подобной энергии на месте ее потребления.

Для этого применяются или отдельные конденсаторы, или автоматические установки компенсации, которые отслеживают объемы потребления и подключают или отключают конденсаторные батареи. Современные системы компенсации позволяют значительно уменьшить потребление реактивной энергии из внешней сети.

Возвращаясь к вопросу в заголовке статьи, можно ответить на него утвердительно. Реактивная энергия существует. Без нее невозможна работа электроустановок, в которых создается магнитное поле. Не совершая видимой работы, она, тем не менее, является необходимым условием для выполнения работ, совершаемой активной электрической энергией.

Как и в общей теории колебательных движений, в теории переменных токов большую пользу приносят векторные диаграммы. Очевидно, что синусоидально изменяющуюся электродвижущую силу

можно изобразить как проекцию на ось ординат вращающегося против часовой стрелки с угловой скоростью вектора, длина которого равна и начальное положение которого в момент совпадало с осью абсцисс.

Спросим себя, как изобразится в векторной диаграмме ток, протекающий под влиянием синусоидальной электродвижущей силы через катушку, обладающую индуктивностью

Рис. 341. Векторная диаграмма для случая Индуктивного сопротивления.

Рис. 342. Векторная диаграмма для случая емкостного сопротивления.

Мы видели, что ток в этом случае отстает на четверть периода от напряжения. Отставание на четверть периода представится в векторной диаграмме отставанием вектора тока на таким образом, вектор «индуктивного» тока будет перпендикулярен к вектору напряжения (рис. 341), отставая от него на 90. Величина этого вектора

Если мы имеем дело с прохождением переменного тока через конденсатор, то ток опережает электродвижущую силу на четверть периода. Это значит, что вектор, изображающий «емкостный» ток, должен опережать вектор напряжения на (рис. 342). Величина этого вектора, как мы видели выше, определяется соотношением

Для случая активного омического сопротивления ток совпадает по фазе с напряжением. Это значит, что вектор тока совпадает по направлению с вектором напряжения, Величина его, конечно, определяется законом Ома.

Ток, вектор которого совпадает с вектором напряжения, называют активным током. Токи же, векторы которых отстают от вектора напряжения или опережают его на называют реактивными токами. Выбор такого названия объясняется тем, что именно активные токи определяют потребление мощности цепью переменного тока, тогда как на возбуждение реактивного тока (т. е. тока, который отстает от напряжения или опережает его на четверть периода) генератор расходует в течение каждой четверти периода столько же энергии, сколько в следующую четверть периода этот реактивный ток отдает генератору обратно (см. рис. 337); в итоге получается, что реактивный ток не производит работы.

В более общем случае, когда сдвиг фазы между током и напряжением определяется углом (в радианах), работа, производимая переменным током за целое (или полуцелое) число периодов, пропорциональна

Действительно, пусть ток отстает от напряжения на угол

Тогда работа тока за период определяется интегралом

а средняя мощность, потребляемая током, определяется отношением этой работы к продолжительности периода:

Если ввести эффективные значения тока и напряжения, то

При т. е. при чисто реактивных токах, мощность, передаваемая по электрической цепи от генератора к нагрузке, в среднем равна нулю.

При каких-либо заданных величинах напряжения и тока, чем меньше разность фаз между ними и соответственно чем ближе к единице, тем большая мощность передается током от генератора к нагрузке; поэтому называют коэффициентом мощности цепи.

Во многих случаях реактивные токи необходимы. Так, если переменным током мы питаем электромагнит, предназначенный, скажем, для подъема железных предметов, то катушка электромагнита, представляя собой в идеальном случае чисто индуктивное сопротивление, будет потреблять от сети реактивный ток, отстающий от напряжения сети на

Однако в большинстве случаев, в частности при питании трансформаторов, которые служат для преобразования переменных напряжений, важен активный ток, который создается при нагрузке вторичной обмотки трансформатора (§ 84). Реактивный же ток, который необходим для создания магнитного поля в сердечнике трансформатора, носит, в сущности, вспомогательный характер; он непосредственно не производит никакой полезной работы.

Предположим, что к сети подключено, как это часто бывает, большое количество трансформаторов. Каждый из них потребляет известный реактивный ток для создания магнитного поля сердечника. Это значительно ухудшает коэффициент мощности установки.

Однако есть возможность добиться совпадения вектора тока с вектором напряжения, воспользовавшись явлением резонанса (§ 83). Для этого включают в сеть, кроме трансформаторов, также и емкость С, подобрав ее так, чтобы ее реактивный ток был равен суммарному реактивному току трансформаторов.

Тогда во внешней цепи будет течь только активный ток, реактивные же токи трансформаторов и емкости взаимно компенсируют друг друга. Они будут циркулировать лишь в цепи: емкость - обмотки трансформаторов, не заходя в питающую сеть и в генератор электроцентрали. Для питающей линии и для генератора электроцентрали и условия их работы будут наивыгоднейшими.

Это мероприятие имеет существенное экономическое значение. Совершенно ясно, что электроцентраль и линии электропередачи, не загруженные бесполезным реактивным током, могут быть в большей мере загружены токами активными.

Следует отметить, что представление о реактивном токе как о токе, фаза которого сдвинута на относительно напряжения и который поэтому в среднем не производит никакой работы и не сопровождается рассеянием энергии (на нагревание проводов), конечно, является идеализацией (схематическим упрощением) процессов, происходящих в действительности при прохождении переменного тока через катушки или конденсаторы. Заключение, что фазы токов, проходящих через катушку или конденсатор, отличаются от фазы напряжения на 90°, являлось бы точным только в том случае, если бы прохождение этих токов не было связано с нагреванием проводов и другими потерями (как это было предположено в предыдущем параграфе). Но ток, проходящий через катушку, в отношении нагревания проводов, происходящего по закону Джоуля-Ленца, ничем не отличается от активного тока той же частоты (а при большой частоте сопротивление обмотки катушки вследствие скин-эффекта может оказаться значительным).

Кроме того, часть энергии тока рассеивается вследствие гистерезисных потерь в сердечнике катушки (если он имеется) и токов Фуко в окружающих проводниках, например в металлических «экранах», в которые помещают катушки радиоаппаратов. Может иметь место также утечка тока вследствие несовершенства изоляции и т. п. Потери энергии тока, но обычно меньшие, чем в катушках, наблюдаются и при прохождении тока через конденсаторы. В этом случае они вызываются главным образом некоторым отставанием во времени от напряженности поля поляризации диэлектрика (в той ее части, на которую оказывает

влияние молекулярно-тепловое движение), а также иногда наличием небольших ионных токов проводимости в диэлектрике конденсатора.

Вследствие потерь ток через катушку или конденсатор никогда не является чисто реактивным, т. е. сдвиг его фазы относительно напряжения никогда не бывает точно равным а всегда оказывается меньше, чем на угол который называют иглом потерь. Под действием напряжения в идеальной катушке должен был бы проходить чисто реактивный ток с амплитудой - в действительности же, как показано в конце следующего параграфа (в виде пояснения выведенного там обобщенного закона Ома), возбуждается ток с амплитудой, уменьшившейся вследствие потерь до значения этот фактический ток через катушку представляет собой сумму возникшего в связи с потерями активного тока и реактивного тока

с амплитудой, уменьшившейся до величины что из рис. 343. Согласно рис. 343

Рис. 343. Вследствие потерь амплитуда тока через катушку уменьшается до величины а амплитуда реактивного тока - до величины где угол потерь.

Аналогичные соотношения и такая же диаграмма справедливы и для тока через конденсатор. Так как активный ток - это ток, фаза которого совпадает с напряжением, то очевидно, что мощность, рассеиваемая вследствие потерь, равна Та же мощность будет рассеиваться в цепи, составленной из идеальной катушки с той же индуктивностью и некоторого сопротивления включенного последовательно с ней (называемого сопротивлением потерь), если это сопротивление определено как раз из условия равенства рассеиваемых мощностей:

Как упоминалось выше,

Поэтому получается, что

Подставляя это значение амплитуды активного тока в приведенное выше выражение для тангенса угла потерь, приходим к формуле, которую считают основной при анализе влияния потерь на режим переменного тока в электрических цепях:

По смыслу вывода этой формулы понятно, что аналогичное соотношение справедливо и для тангенса угла потерь в цепи с конденсатором

В радиотехнических расчетах часто применяют величину, обратную тангенсу угла потерь, которую называют добротностью электрической цепи (см. стр. 460 и 485):

Потери в катушках большой индуктивности в высокой мере зависят от конструкции и магнитных свойств сердечника и выполнения обмотки. При правильной конструкции потери в сердечнике и в обмотке (не одинаково зависящие от частоты) должны быть по возможности уравнены.

Для уменьшения потерь на токи Фуко сердечники набирают из тонких листов трансформаторного железа (толщиной 0,5-0,35 мм), покрытых для изоляций их друг от друга тонким (0,05 мм) слоем лака. Потери в таких сердечниках составляют около на килограмм массы сердечника. Сечение проводов выбирают с учетом возрастания их сопротивления вследствие скин-эффекта так, чтобы при эксплуатации потери в обмотке были приблизительно равны потерям в сердечнике. Суммарно потери в сердечнике и обмотке трансформаторов большой мощности (порядка составляют 3-4%, а в трансформаторах очень большой мощности (порядка несколько десятых долей процента

Потери в небольших трансформаторах лабораторного типа и в «силовых» трансформаторах, применяемых в радиоаппаратуре, обычно бывают не меньше 10-12% (чаще около Еще большую часть мощности (как правило, 30%) составляют потери в дросселях и трансформаторах усилителей звуковой частоты. Первичная обмотка трансформаторов для токов звуковой частоты состоит из 2000-5000 витков и имеет индуктивность

Катушки резонансных контуров радиочастот имеют индуктивность порядка тысячных (а для коротких волн-миллионных) долей генри. Такая индуктивность создается сравнительно небольшим числом витков провода без ферромагнитного сердечника. В связя с этим потери в радиочастотных катушках невелики - порядка 1% (тангенс угла потерь - от 0,02 до 0,005).

Потери в конденсаторах (за исключением электролитических конденсаторов) обычно не превышают что соответствует тангенсу угла потерь В электролитических конденсаторах тангенс угла потерь может достигать 0,2.

Среди лучших изоляторов (имеющих удельное сопротивление порядка ом-см) выделяются наименьшим значением тангенса угла потерь: кварц плавленый, слюда-мусковит, парафин и полистирол; для них

Общая зависимость электрической мощности от электрического тока и напряжения известна давно: это произведение. Помножим ток на напряжение – получим значение этой величины, потребляемой цепью из сети.

Но на деле все может оказаться не так просто. Потому что, просто умножив напряжение на ток, мы получим значение полной мощности. Казалось бы – это то, что нужно! Ведь обычно нас интересует именно полное значение любой величины.

Однако на электрическую мощность такое отношение распространять нельзя, так как электроэнергия и мощность, на основании которых изменяются показания нашего квартирного счетчика – не полные, а активные.

Активная мощность – это та мощность, которая потребляется в тот момент, когда в сети в один и тот же момент есть и напряжение, и синхронный с ним электрический ток. На самом деле, в цепях постоянного тока за исключением переходных процессов при включении-выключении так оно и бывает.

Постоянно «жмет» напряжение, если цепь замкнута – постоянно «давит» некоторый ток. В итоге полная и активная мощность становятся равны, поскольку ток и напряжение действуют согласованно.

Иное дело – цепи переменного тока. Напряжение в них меняет свое направление пятьдесят раз в секунду, а ток… иногда приотстает, а иногда опережает напряжение. К примеру, если в цепи имеется «индуктивность», то есть, катушка из провода, имеющая множество витков, то ток на таком элементе цепи «отстанет» от напряжения.

Причина заключается в противо-ЭДС самоиндукции, сопротивляющейся изменению тока в катушке. Получается, что напряжение к индуктивности уже приложено, а ток еще никак не может возрасти из-за помех со стороны противо-ЭДС.

В среде учащихся многих электротехнических ВУЗов бытует такое художественное сравнение: «Для тока требуется время, чтобы он мог пробежать через каждый виток, а напряжение – вот оно, уже на концах катушки».

ЭДС противоиндукции вызывает падение напряжения и снижение тока в цепи. То есть, катушка является источником индуктивного сопротивления. Но оно отличается от активного сопротивления тем, что на нем не выделяется никакого тепла и вообще не потребляется никакой мощности в привычном понимании.

Происходит просто «пустопорожнее» переливание электроэнергии от источника к индуктивности. И энергия, перенаправляемая туда и обратно как мяч в настольном теннисе, никуда из сети не уходит. Это реактивная энергия и потребителю в быту за нее не приходится платить энергосбытовой компании.

Реактивная энергия , производимая в сети в единицу времени, может считаться реактивной мощностью. Вычисляется она так же, как и активная – произведением реактивной составляющей тока на напряжение.

Реактивной же составляющей тока является та, которая не совпадает с напряжением по своей фазе. Величина «несовпадения» характеризуется углом сдвига фаз. В случае с чистой индуктивностью сдвиг фаз составляет максимум – 90°. Это означает, что когда напряжение достигает самого большого своего значения, ток только начинает расти.

А если в цепи расположен конденсатор (емкость), то напряжение, напротив, будет отставать от тока на 90 градусов по причине того, что для возникновения падения напряжения конденсатору требуется зарядить свои обкладки.

Точно так же источник и конденсатор в одной цепи будут обмениваться реактивной энергией, которая ни на что не будет тратиться.

В реальной цепи не бывает чисто активной или чисто реактивной нагрузки, поэтому полная мощность всегда состоит из активной и реактивной составляющей, а угол сдвига фаз находится в пределах между нулем и 90°.

Реактивная составляющая тока равна его произведению на синус угла сдвига фаз, а активная – произведению на косинус этого угла:

Q=I*sin⁡φ; P=I*cosφ

Полную мощность можно найти по теореме Пифагора:

S=√(P^2+Q^2);

При этом, реактивную мощность, в отличие от активной, нельзя исчислять в ваттах, потому что она неэффективна. Поэтому для реактивной мощности придумали особую единицу измерения – вольт-амперы реактивные (ВАРы). А полная измеряется в вольт-амперах, без уточнения характера нагрузки.


Как известно, генератор переменного тока вырабатывает два вида электрической энергии — активную и реактивную. Активная энергия расходуется в электрических печах, лампах, электрических машинах и иных потребителях, переходя в другие виды энергии — тепловую, световую, механическую. Реактивная же энергия не расходуется потребителями и возвращается по питающей линии к генератору. Это влечет рост тока, протекающего по ЭС, и соответственно требует увеличения площади их сечения.

Компенсация реактивной мощности

В электрических цепях, содержащих комбинированные сопротивления (нагрузку), в частности, активную (лампы накаливания, электронагреватель и др.) и индуктивную (электродвигатели, распределительные трансформаторы, сварочное оборудование, люминесцентные лампы и др.) составляющие, общую мощность, забираемую от сети, можно выразить следующей векторной диаграммой:

Отставание тока по фазе от напряжения в индуктивных элементах обуславливает интервалы времени (см. рис.), когда напряжение и ток имеют противоположные знаки: напряжение положительно, а ток отрицателен и наоборот. В эти моменты мощность не потребляется нагрузкой, а подается обратно по сети в сторону генератора. При этом электроэнергия, запасаемая в каждом индуктивном элементе, распространяется по сети, не рассеиваясь в активных элементах, а совершая колебательные движения (от нагрузки к генератору и обратно). Соответствующую мощность называют реактивной.

Полная мощность складывается из активной мощности, совершающей полезную работу, и реактивной мощности, расходуемой на создание магнитных полей и создающей дополнительную нагрузку на силовые линии питания. Соотношение между полной и активной мощностью, выраженное через косинус угла между их векторами, называется коэффициентом (фактором) мощности.

Активная энергия преобразуется в полезную - механическую, тепловую и др. энергии. Реактивная энергия не связана с выполнением полезной работы, однако она необходима для создания электромагнитного поля, наличие которого является необходимым условием для работы электродвигателей и трансформаторов. Потребление реактивной мощности от энергоснабжающей организации нецелесообразно, так как приводит к увеличению мощности генераторов, трансформаторов, сечения подводящих кабелей (снижение пропускной способности), а так же повышению активных потерь и падению напряжения (из-за увеличения реактивной составляющей тока питающей сети). Поэтому реактивную мощность необходимо получать (генерировать) непосредственно у потребителя. Эту функцию выполняют установки компенсации реактивной мощности (КРМ) , основными элементами которых являются конденсаторы.

Установки КРМ - электроприемники с емкостным током, которые при работе формируют опережающую реактивную мощность (ток по фазе опережает напряжение) для компенсации отстающей реактивной мощности, генерируемой индуктивной нагрузкой.

Реактивная мощность Q пропорциональна реактивному току, протекающему через индуктивный элемент:
Q = U x IL,
где IL - реактивный (индуктивный) ток, U - напряжение сети. Таким образом, полный ток, питающий нагрузку, складывается из активной и индуктивной составляющих:
I = IR + IL.
Для снижения доли реактивного тока в системе «генератор-нагрузка» параллельно нагрузке подключают компенсаторы (установки КРМ). Реактивная мощность при этом уже не перемещается между генератором и нагрузкой, а совершает локальные колебания между реактивными элементами - индуктивными обмотками нагрузки и компенсатором. Такая компенсация реактивной мощности (снижение индуктивного тока в системе «генератор-нагрузка») позволяет, в частности, передать в нагрузку большую активную мощность при той же номинальной полной мощности генератора.

Для чего необходима компенсация реактивной мощности?

Основной нагрузкой в промышленных электросетях являются асинхронные электродвигатели и распределительные трансформаторы. Эта индуктивная нагрузка в процессе работы является источником реактивной электроэнергии (реактивной мощности), которая совершает колебательные движения между нагрузкой и источником (генератором), не связана с выполнением полезной работы, а расходуется на создание электромагнитных полей и создает дополнительную нагрузку на силовые линии питания.
Реактивная мощность характеризуется задержкой (в индуктивных элементах ток по фазе отстает от напряжения) между синусоидами фаз напряжения и тока сети. Показателем потребления реактивной мощности является коэффициент мощности (КМ) , численно равный косинусу угла (ф) между током и напряжением. КМ потребителя определяется как отношение потребляемой активной мощности к полной, действительно взятой из сети, т.е.: cos(ф) = P/S. Этим коэффициентом принято характеризовать уровень реактивной мощности двигателей, генераторов и сети предприятия в целом. Чем ближе значение cos(ф) к единице, тем меньше доля взятой из сети реактивной мощности.

Пример: при cos(ф) = 1 для передачи 500 KW в сети переменного тока 400 V необходим ток значением 722 А. Для передачи той же активной мощности при коэффициенте cos(ф) = 0,6 значение тока повышается до 1203 А.

  • возникают дополнительные потери в проводниках вследствие увеличения тока;
  • снижается пропускная способность распределительной сети;
  • отклоняется напряжение сети от номинала (падение напряжения из-за увеличения реактивной составляющей тока питающей сети).

Все сказанное выше является основной причиной того, что предприятия электроснабжения требуют от потребителей снижения доли реактивной мощности в сети.
Решением данной проблемы является компенсация реактивной мощности - важное и необходимое условие экономичного и надежного функционирования системы электроснабжения предприятия. Эту функцию выполняют устройства компенсации реактивной мощности (КРМ-конденсаторные установки) , основными элементами которых являются конденсаторы.

Правильная компенсация реактивной мощности позволяет:

  • снизить общие расходы на электроэнергию;
  • уменьшить нагрузку элементов распределительной сети (подводящих линий, трансформаторов и распределительных устройств), тем самым продлевая их срок службы;
  • снизить тепловые потери тока и расходы на электроэнергию;
  • снизить влияние высших гармоник;
  • подавить сетевые помехи, снизить несимметрию фаз;
  • добиться большей надежности и экономичности распределительных сетей.

Кроме того, в существующих сетях она позволяет:

  • исключить генерацию реактивной энергии в сеть в часы минимальной нагрузки;
  • снизить расходы на ремонт и обновление парка электрооборудования;
  • увеличить пропускную способность системы электроснабжения потребителя, что позволит подключить дополнительные нагрузки без увеличения стоимости сетей;
  • обеспечить получение информации о параметрах и состоянии сети,

а во вновь создаваемых сетях - уменьшить мощность подстанций и сечения кабельных линий, что снизит их стоимость.

Где необходима компенсация реактивной мощности

Одним из основных направлений сокращения потерь электроэнергии и повышения эффективности электроустановок промышленных предприятий является компенсация реактивной мощностис одновременным повышением качества электроэнергии непосредственно в сетях предприятий. Чем ниже коэффициент мощности cos(ф) при одной и той же активной нагрузке электроприемников, тем больше потери мощности и падение напряжения в элементах систем электроснабжения. Поэтому следует всегда стремиться к получению наибольшего значения коэффициента мощности.
Для решения этой задачи применяются компенсирующие устройства, называемые установками компенсации реактивной мощности (КРМ) , основными элементами которых являются конденсаторы. Применение установок КРМ позволяет исключить оплату за потребление из сети и генерацию в сеть реактивной мощности, при этом суммы платежа за потребляемую энергию, определяемые тарифами энергосистемы, значительно сокращаются.
Применение установок КРМ эффективно на предприятиях, где используются станки, компрессоры, насосы, сварочные трансформаторы, электропечи, электролизные установки и прочие потребители энергии с резкопеременной нагрузкой, то есть на производствах металлургической, горнодобывающей, пищевой промышленности, в машиностроении, деревообработке и производстве стройматериалов - то есть везде, где из-за специфики производственных и технологических процессов значение cos(ф) колеблется от 0,5 до 0,8.

Применение установок компенсации реактивной мощности КРМ необходимо на предприятих, использующих:

  • Асинхронные двигатели (cos(ф) ~ 0.7);
  • Асинхронные двигатели, при неполной загрузке (cos(ф) ~ 0.5);
  • Выпрямительные электролизные установки (cos(ф) ~ 0.6);
  • Электродуговые печи (cos(ф) ~ 0.6);
  • Индукционные печи (cos(ф) ~ 0.2-0.6);
  • Водяные насосы (cos(ф) ~ 0.8);
  • Компрессоры (cos(ф) ~ 0.7);
  • Машины, станки (cos(ф) ~ 0.5);
  • Сварочные трансформаторы (cos(ф) ~ 0.4);
  • Лампы дневного света (cos(ф) ~ 0.5-0.6).

Снижение величины полной мощности при компенсации реактивной мощности:

* данные получены на основании обобщенного опыта эксплуатации установок КРМ

Существенным для практики является тот факт, что реактивная нагрузка индуктивного характера может быть скомпенсирована включением параллельно ей емкостной нагрузки. При внимательном изучении это явление становится очевидным: отстающий ток индуктивной ветви такой цепи компенсируется опережающим током ветви емкостной. При надлежащем подборе емкости отставание тока в цепи может быть почти полностью скомпенсировано (cos f = 1). Конденсаторы, включаемые параллельно индуктивной нагрузке для компенсации ее РМ, называют компенсирующими, или косинусными (поскольку служат для повышения cos f ЭУ).

Методы компенсации

Компенсация РМ может быть индивидуальной (местной), когда конденсаторы монтируются в непосредственной близости от каждого потребителя и групповой с использованием специальных конденсаторных установок, располагаемых обычно вблизи трансформаторных подстанций, распределительных пунктов и т.п., присоединяемых к началу каждой групповой линии. Такой метод целесообразен для крупных ЭУ.

Для чего нужна компенсация реактивной мощности в распределительных электрических сетях

Активная мощность вырабатывается только генераторами электрических станций. Реактивная мощность вырабатывается генераторами электрических станций (синхронными двигателями станций в режиме перевозбуждения), а также компенсирующими устройствами (например, батареями конденсаторов).
Передача реактивной мощности от генераторов по электрической сети к потребителям (индукционным приемникам энергии) вызывает в сети затраты активной мощности в виде потерь и дополнительно загружает элементы электрической сети, снижая их общую пропускную способность.
Так, например, генератор с номинальной мощностью 1250 кВА при номинальном коэффициенте мощности cosφ=0,8 может отдать потребителю активную мощность, равную 1250×0,8=1000 кВт. Если генератор будет работать с соsφ=0,6 , то в сеть будет отдаваться активная мощность равная 1250×0,6=750 кВт (активная мощность недоиспользуется на четверть).
Поэтому, как правило, увеличение выдачи реактивной мощности генераторами станций с целью доставки ее потребителям нецелесообразно. Наибольший экономический эффект достигается при размещении компенсирующих устройств (генерации реактивной мощности) вблизи потребляющих реактивную мощность индукционных приемников энергии.

Индукционные приемники энергии или потребители реактивной мощности

  • Трансформатор. Он является одним из основных звеньев в передаче электроэнергии от источника электрической энергии до потребителя и предназначен для преобразования посредством электромагнитной индукции системы переменного тока одного напряжения в систему переменного тока другого напряжения при неизменной частоте и без существенных потерь мощности.
  • Асинхронный двигатель. Асинхронные двигатели наряду с активной мощностью потребляют до 65% реактивной мощности энергосистемы.
  • Индукционные печи. Это крупные электроприемники, требующие для своего действия большое количество реактивной мощности. Индукционные печи промышленной частоты часто используются для плавки металлов.
  • Преобразовательные установки, преобразующие переменный ток в постоянный при помощи выпрямителей. Данные установки широко применяются на промышленных предприятиях и железнодорожном транспорте, использующем постоянный ток.
  • Социально-бытовая сфера. Увеличение числа различных электроприводов, стабилизирующих и преобразовательных устройств, применение полупроводниковых преобразователей приводит к росту потребляемой реактивной мощности, а это, в свою очередь, влияет на работу других электроприемников, сокращает срок их службы, создает дополнительные потери электроэнергии. Современные люминесцентные (так называемые энергосберегающие) светильники, которые все шире применяются в квартирах и офисах, также являются потребителями реактивной мощности.

К чему приводит отсутствие компенсации реактивной мощности у абонентов

  • У трансформаторов при уменьшении cosφ уменьшается пропускная способность по активной мощности вследствие увеличения реактивной нагрузки.
  • Увеличение полной мощности при снижении cosφ приводит к возрастанию тока и, следовательно, потерям мощности, которые пропорциональны квадрату тока.
  • Увеличение тока требует повышения сечений проводов и кабелей, растут капитальные затраты на электрические сети.
  • Увеличение тока при снижении cosφ ведет к увеличению потери напряжения во всех звеньях энергосистемы, что вызывает понижение напряжения у потребителей.
  • На промышленных предприятиях понижение напряжения нарушает нормальную работу электроприемников. Снижается частота вращения электродвигателей, что приводит к снижению производительности рабочих машин, уменьшается производительность электрических печей, ухудшается качество сварки, снижается световой поток ламп, уменьшается пропускная способность заводских электрических сетей, а как итог - ухудшается качество продукции.