Схемы включения биполярных транзисторов. Транзистор и биполярный транзистор, расчёт транзисторного каскада

– один из двух основных видов транзисторов, изготавливается в виде трёхэлектродного полупроводникового прибора. В каждом из этих проводников имеются последовательно расположенные слои обладающие n-проводимостью (примесной) или p-проводимостью (дырочной). Таким образом, формируются биполярные транзисторы n-p-n или p-n-p типов.

Три электрода в биполярном транзисторе подключены соответственно к каждому из трёх проводящих слоёв.

В момент работы биполярного транзистора происходит одновременная передача разнотипных зарядов, переносимых электронами и дырками. То есть всего задействовано два типа зарядов, потому этот транзистор и носит название «биполярный» («би» означает «два).

Рис.1: Устройство биполярного транзистора.

Соединённый со средним слоем электрод обозначается как «база». Два крайних электрода именуются «коллектор» и «эмиттер». По типу проводимости два этих канала одинаковы. Однако, с целью получения устройства с необходимыми характеристиками, слой, соединённый с эмиттером, делают более легированными примесями, а соединённый с коллектором – наоборот. Как результат, допустимое коллекторное напряжение увеличивается. Учёт уровня обратного напряжения, при котором происходит пробой эмиттерного перехода, не столь важен, поскольку для сборки электронной схемы обычно применяют модели с прямым смещением по эмиттерному p-n-переходу, что превращает схему практически в проводник. Помимо прочего, легированный эмиттерный слой облегчает переход неосновных носителей в центральный проводящий слой, способствуя увеличению коэффициента преобразования по току в схеме с ОБ (общей базой).

Также, в модифицированной конструкции коллекторный p-n-переход по размерам значительно превосходит эмиттерный. Данный параметр обусловлен необходимостью улучшения сбора неосновных носителей, поступающих из слоя базы, и подъёма коэффициента передачи.

Быстродействие биполярных транзисторов зависит от толщины базового слоя: чем он толще, тем медленнее функционирует вся схема. Но крайне истончать этот слой тоже нельзя. При уменьшении толщины уменьшается и временной отрезок, требующийся для прохождения неосновных носителей через тело базового слоя, но вместе с тем происходит значительное уменьшение предельного коллекторного напряжения. Поэтому подбор правильного размера базы осуществляется с учётом обоих этих явлений.

Устройство и принцип действия

Рис.2: Планарный биполярный n-p-n транзистор в поперечном разрезе

Самые первые модели биполярных транзисторов выполнялись с применением металлического германия (полупроводниковый материал). На данный момент для этих целей используется монокристаллический кремний и монокристаллический арсенид галлия.

Рис.3: Монокристаллы кремния и арсенида галлия

Наиболее быстродействующими устройствами являются те, в которых задействован арсенид галлия. По этой причине их наиболее часто применяют как элементы сверхбыстродействующих логических схем и схем сверхвысокочастотных усилителей.

Как уже говорилось выше, структура биполярного транзистора складывается из эмиттерного, базового и коллекторного слоёв с различным уровнем легированности, и каждый слой соединён со своим электродом, представленный омическим (невыпрямляющим) контактом.

Слаболегированный базовый слой транзистора отличается большим уровнем омического сопротивления.

При соотнесении контактов эмиттер-база и коллектор-база можно отметить, что первый уступает по размерам второму.

Подобная конструкция обусловлена следующими моментами:

  • Большой коллекторно-базовый переход позволяет увеличить количество передаваемых от базы к коллектору неосновных носителей заряда (ННЗ);
  • На момент активной работы К-Б-переход функционирует в условиях обратного смещения, что вызывает сильное тепловыделение в зоне коллекторного перехода, поэтому, чтобы улучшить его теплоотводность приходится увеличивать площадь.

Таким образом «идеальный» симметричный биполярный транзистор фигурирует только в теоретических выкладках, а перенос теорию на практическую базу демонстрирует, что наибольшим КПД обладают именно те модели, которые не обладают симметрией.

В режиме активного усиления в транзисторе происходит прямое смещение Э-перехода (он становится открытым), и обратное смещение К-перехода (он становится закрытым). В противоположной ситуации, при закрытии Э-перехода и открытии К-перехода происходит инверсное включение биполярного транзистора.

Если подробнее рассматривать процесс функционирования транзисторов n-p-n типа, то в первую очередь наблюдается переход основных НЗ (носителей заряда) из эмиттерного слоя по Э-Б-переходу в базовый слой. Часть НЗ, представленных электронами взаимодействует с дырками базы, что приводит к нейтрализации обоих зарядов и сопутствующему выделению энергии. Тем не менее, базовый слой достаточно тонок и легирован достаточно слабо, это увеличивает общее время процесса взаимодействия, поэтому гораздо большее количество эмиттерных НЗ успевает проникнуть в коллекторный слой. Кроме того, сказывается действие силы электрического поля, образуемого смещённым коллекторным переходом. Благодаря этой силе значительно увеличивается количество перетягиваемых из базового слоя электронов.

В результате, значение коллекторного тока практически равняется эмиттерному за вычетом потерь в базовом слое, которыми и исчисляется ток самой базы. Для вычисления значения коллекторного тока используется формула:

где Iк – коллекторный ток, Iэ – эмиттеный ток, α– коэффициент передачи тока эмиттера.

Спектр значений коэффициента α варьируется от 0,9 до 0,99. Большие значения позволяют производить более эффективную трансляцию тока транзистором. Величина α при этом не определяется тем, какое напряжение демонстрируют К-Б и Б-Э переходы. Как результат, в условиях множества вариантов рабочего напряжения сохраняется пропорциональное соотношение между Iк и Iб. Для нахождения коэффициента данной пропорциональности применяется формула:

β = α/(1 − α).

Значения β могут находиться в диапазоне 10-100. Отсюда можно сделать вывод о том, что для регуляции работы большого коллекторного тока, вполне можно обходиться током малой силы на базе.

Разновидности порядка действия биполярных транзисторов

Нормальный активный режим

Характеристика:

  1. Открытая эмиттерно-базовая область (смещение по прямому направлению);
  2. Закрытая коллекторно-базовая область (смещение по обратному направлению);
  3. Положительный уровень напряжения в эмиттерно-базовой области;
  4. Отрицательный уровень напряжения в коллекторно-базовой области.

Пункты 3 и 4 приведены для p-n-p транзисторов. Для моделей с n-p-n структурой характеристика будет обратной данной.

Инверсный активный режим

Характеристика:

  1. Обратное смещение на эмиттерном переходе;
  2. Прямое смещение на коллекторным переходе.

Остальные пункты как для нормального активного режима.

Режим насыщения

Характеристика:

  1. Соединение Э-перехода и К-перехода с внешними источниками;
  2. Прямое смещение эмиттерного и коллекторного перехода;
  3. Ослабление диффузного электрического поля из-за электрического поля внешних источников;
  4. Снижение уровня потенциального барьера, что приведёт к ослаблению контроля диффузии основных НЗ, а также смещению большого количества дырок из эмиттерных и коллекторных областей в область базы.

Вследствие последнего пункта происходит формирование эмиттерных и коллекторных токов насыщения (Iэ.нас. и Iк.нас.)

В этом же режиме фигурирует понятие «напряжение насыщения» на переходе К-Э. Благодаря ему можно определить степень падения напряжения для открытого транзистора. Подобным образом напряжение насыщения для перехода Б-Э определяет степень падения напряжения для приведённого участка.

Режим отсечки

Характеристика:

  • Смещение по обратному направлению в К-области;
  • Смещение Э-перехода по любому направлению, при условии, что оно не превысит пороговый показатель, который отграничивает начало процесса испускания электронов эмиттером в базовый слой.

Уровень приведённого показателя в случае с кремниевым биполярным транзистором достигает 0,6-0,7 Вольт, значит режим отсечки возможен при нулевой силе тока на базе, либо при уровне напряжения менее 0,7 Вольт на Э-Б переходе.

Барьерный режим

Характеристика:

  • Соединение базового сегмента и коллектора на коротко, либо с применением малогабаритного резистора;
  • Производится подключение резистора к коллекторной или эмиттерной цепи, чтобы он мог задавать ток посредством транзисторного элемента.

Действие в представленном режиме преобразует полупроводниковый триод в аналог диода с последовательным подключением к токозадающему резистору. Каскад, построенный в соответствии с данной схемой,имеет небольшое количество составляющих и почти не зависит от характеристик используемого устройства.

Схемы включения

Для характеристики включающей транзисторной схемы применяются два значимых показателя:

  • Величина коэффициента фиксирующего усиление по току, которое вычисляется через отношение тока выхода (Iвых) к току входа (Iвх);
  • Значение входного сопротивления (Rвх), которое вычисляется через отношение входного напряжения (Uвх) к току входа (Iвх).

Включение с общей базой (ОБ)

Рис.4: Усилитель с ОБ

Характеристика:

  • Вариант схемы, при котором уровень сопротивления на входе является самым низким, а выходе – самым высоким;
  • По α (коэффициенту усиления по току) приближается к 1;
  • Обладает большим Кu (коэффициентом усиления по напряжению);
  • Не происходит инвертации фазы сигнала.

Для определения коэффициента α необходимо вычислить отношение тока коллектора к току эмиттера (иначе – отношение тока выхода к току входа).

Для определения входного сопротивления Rвх следует вычислить соотношение входного напряжения и входного тока (иначе – соотношение напряжения на переходе Э-Б и эмиттерного тока). Значение этого параметра для схем с ОБ достигает максимум 100 Ом (в биполярном транзисторе малой мощности).

Плюсы применения схем включения с ОБ

  • Хорошее температурное и частотное значение;
  • Высокий уровень допустимого напряжения.

Минусы применения схем включения с ОБ

  • Незначительная степень усиления по току (поскольку, значение коэффициента α не достигает единицы);
  • Низкий уровень входного сопротивления;
  • Работа обеспечивается двумя разными источниками напряжения.

Включение с общим эмиттером (ОЭ)

Характеристика:

  • Ток на выходе соответствует току коллектора;
  • Ток на входе соответствует току базы;
  • Напряжение на входе соответствует напряжению на Б-Э переходе;

Вычислить коэффициент β (усиление по току) для данной схемы можно, через отношение тока выхода к току входа (тока коллектора к току базы; тока коллектора к разности эмиттерного и коллекторного токов).

Для определения входного сопротивления (Rвх) высчитывается отношение напряжения на входе к току на входе (напряжения на Б-Э переходе к току на базе).

  • Большое значение коэффициента β;
  • Большое значение коэффициента усиления по напряжению;
  • Самый высокий уровень усиления мощности;
  • Задействуется только один источник питания;
  • Происходит инвертация выходного напряжения (по отношению к входному).

Плюсы применения схем включения с ОЭ

  • Температурное и частотное значение гораздо ниже относительно схем включения с ОБ.

Включение с общим коллектором (ОК)

Характеристика:

  • Ток на выходе соответствует току на эмиттере;
  • Ток на входе соответствует величине тока в области базы;
  • Напряжение на входе соответствует напряжению на Б-К переходе;
  • Напряжение на выходе соответствует напряжению на К-Э переходе.

Вычисление β показателя осуществляется через отношение тока на выходе к току на входе (тока в области эмиттера к току в области базы; тока эмиттерной области к разнице Э и К тока).

Величина сопротивления на входе определяется по отношению напряжения на входе к току на входе (отношению суммы напряжений на Б-Э и К-Э переходах к токовому показателю на базе).

Схема с данным типом подключения носит название эмиттерного повторителя.

Плюсы эксплуатации схем включения с ОК

  • Значительный уровень сопротивления на входе;
  • Низкий уровень сопротивления на выходе.

Минусы эксплуатации схем включения с ОК

  • Величина показателя, характеризующего усиление по напряжению, не достигает единицы.

Значимые показатели у биполярных транзисторов

  • Величина показателя, характеризующего передачу по току;
  • Уровень сопротивления на выходе;
  • Величина выходной проводимости;
  • Величина обратного К-Э тока;
  • Время, требуемое для включения;
  • Уровень предельной частоты показателя, характеризующего передачу тока базы;
  • Величина обратного тока в коллекторной области;
  • Величина максимально допустимого тока;
  • Уровень граничной частоты показателя, характеризующего передачу тока (для схем с ОЭ).

Существует деление определяющих качеств биполярного транзистора на две основные группы. Первая группа параметров определяет перечень признаков, проявляющихся при работе транзистора, но не зависящих от использованного типа подключения. Сюда относятся:

  • Величина показателя усиления по току α;
  • Общее сопротивление эмиттера;
  • Общее сопротивление коллектора;
  • Значение сопротивления на базе по поперечному направлению.

Если говорить о параметрах второй группы, то они меняются согласно использованной схеме включения. Кроме того, необходимо учитывать отсутствие линейности транзисторных свойств, поэтому перечень вторичных характеристик можно применять только по отношению к низкоуровневым частотам и импульсам с малой амплитудой.

Вторичными параметрами считают:

  • Уровень сопротивления на входе;
  • Значение показателя демонстрирующего обратную связь по напряжению;
  • Величина показателя передачи тока;
  • Уровень выходной проводимости.

Помимо вышеперечисленных моментов следует учитывать, что высокая частота влечёт за собой снижение ёмкостного сопротивления, снижение силы тока и последующее уменьшение величин коэффициентов α и β. Частотный показатель, вызывающий уменьшение α и β на 3 дБ обозначается как граничный.

Сферы применения

Полупроводниковые триоды могут использоваться для создания:

  • Усилителей, каскадов усиления;
  • Генераторов сигналов;
  • Модуляторов;
  • Демодуляторов (детекторов);
  • Инверторов (логических элементов) и т.д.

Дополнительную информацию можно найти на http://www.aistsoft.ru/ . Система АИСТ крупный ресурс данных по специализированной информации(технические описания, паспорта, чертежи, сертификаты и другое).

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Страница 1 из 2

Устройство и принцип действия биполярного транзистора

Биполярный транзистор представляет собой полупроводниковый прибор, имеющий два электронно-дырочных перехода, образованных в одном монокристалле полупроводника. Эти переходы образуют в полупроводнике три области с различными типами электропроводности. Одна крайняя область называется эмиттером (Э), другая - коллектором (К), средняя - базой (Б). К каждой области припаивают металлические выводы для включения транзистора в электрическую цепь.
Электропроводность эмиттера и коллектора противоположна электропроводности базы. В зависимости от порядка чередования р- и n-областей различают транзисторы со структурой р-n-р и n-р-n. Условные графические обозначения транзисторов р-n-р и n-р-n отличаются лишь направлением стрелки у электрода, обозначающего эмиттер.

Принцип работы транзисторов р-n-р и n-р-n одинаков, поэтому в дальнейшем будем рассматривать лишь работу транзистора со структурой р-n-р.
Электронно-дырочный переход, образованный эмиттером и базой, называется эмиттерным, а коллектором и базой - коллекторным. Расстояние между переходами очень мало: у высокочастотных транзисторов оно менее 10 микрометров (1 мкм = 0,001 мм), а у низкочастотных не превышает 50 мкм.
При работе транзистора на его переходы поступают внешние напряжения от источника питания. В зависимости от полярности этих напряжений каждый переход может быть включен как в прямом, так и в обратном направлении. Различают три режима работы транзистора: 1) режим отсечки - оба перехода и, соответственно, транзистор полностью закрыты; 2) режим насыщения - транзистор полностью открыт;3) активный режим - это режим, промежуточный между двумя первыми. Режимы отсечки и насыщения совместно применяются в ключевых каскадах, когда транзистор попеременно то полностью открыт, то полностью заперт с частотой импульсов, поступающих на его базу. Каскады, работающие в ключевом режиме, применяются в импульсных схемах (импульсные блоки питания, выходные каскады строчной развертки телевизоров и др.). Частично в режиме отсечки могут работать выходные каскады усилителей мощности.
Наиболее часто транзисторы применяются в активном режиме. Такой режим определяется подачей на базу транзистора напряжения небольшой величины, которое называется напряжением смещения (U см.) Транзистор приоткрывается и через его переходы начинает течь ток. Принцип работы транзистора основан на том, что относительно небольшой ток, текущий через эмиттерный переход (ток базы), управляет током большей величины в цепи коллектора. Ток эмиттера представляет собой сумму токов базы и коллектора.

Режимы работы биполярного транзистора


Режим отсечки
транзистора получается тогда, когда эмиттерный и коллекторный р-n-переходы подключены к внешним источникам в обратном направлении. В этом случае через оба р-n-перехода протекают очень малые обратные токи эмиттера (I ЭБО ) И коллектора (I КБО ). Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер - мкА (у кремниевых транзисторов) до единиц миллиампер - мА (у германиевых транзисторов).

Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения . Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками U ЭБ и U КБ . В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (I Э.нас ) и коллектора (I К.нас ).


Для усиления сигналов применяется активный режим работы транзистора .
При работе транзистора в активном режиме его эмиттерный переход включается в прямом, а коллекторный - в обратном направлениях.


Под действием прямого напряжения U ЭБ происходит инжекция дырок из эмиттера в базу. Попав в базу n-типа, дырки становятся в ней неосновными носителями заряда и под действием сил диффузии движутся (диффундируют) к коллекторному р-n-переходу. Часть дырок в базе заполняется (рекомбинирует) имеющимися в ней свободными электронами. Однако ширина базы небольшая - от нескольких единиц до 10 мкм. Поэтому основная часть дырок достигает коллекторного р-n-перехода и его электрическим полем перебрасывается в коллектор. Очевидно, что ток коллектора I Кp не может быть больше тока эмиттера, так как часть дырок рекомбинирует в базе. Поэтому I Kp = h 21Б I э
Величина h 21Б называется статическим коэффициентом передачи тока эмиттера. Для современных транзисторов h 21Б = 0,90…0,998. Так как коллекторный переход включен в обратном направлении (часто говорят - смещен в обратном направлении), через него протекает также обратный ток I КБО , образованный неосновными носителями базы (дырками) и коллектора (электронами). Поэтому полный ток коллектора транзистора, включенного по схеме с общей базой
I к = h 21БI э + I КБО
Дырки, не дошедшие до коллекторного перехода и прорекомбинировавшие (заполнившиеся) в базе, сообщают ей положительный заряд. Для восстановления электрической нейтральности базы в нее из внешней цепи поступает такое же количество электронов. Движение электронов из внешней цепи в базу создает в ней рекомбинационный ток I Б.рек. Помимо рекомбинационного через базу протекает обратный ток коллектора в противоположном направлении и полный ток базы
I Б = I Б.рек - I КБО
В активном режиме ток базы в десятки и сотни раз меньше тока коллектора и тока эмиттера.

Схемы включения биполярного транзистора

В предыдущей схеме электрическая цепь, образованная источником U ЭБ , эмиттером и базой транзистора, называется входной, а цепь, образованная источником U КБ , коллектором и базой этого же транзистора,- выходной. База является общим электродом транзистора для входной и выходной цепей, поэтому такое его включение называют схемой с общей базой, или сокращенно «схемой ОБ».
На следующем рисунке изображена схема, в которой общим электродом для входной и выходной цепей является эмиттер. Это схема включения с общим эмиттером, или сокращенно «схема ОЭ» .

K I – коэффициент усиления по току

K U – коэффициент усиления по напряжению

K P – коэффициент усиления по мощности

Предыдущая страница – Следующая страница

Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы и вообще с чем его едят, то берем стул по удобнее и подходим поближе.

Продолжим, и у нас тут есть содержание, будет удобнее ориентироваться в статье 🙂

Виды транзисторов

Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы. Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу а уделим внимание каждому, индивидуально.

Биполярный транзистор

Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.

Триоды за редким исключением применяют в аппаратуре для меломанов.

Биполярные транзисторы выглядеть могут так.

Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие, выглядит как-то так.

Это изображение транзисторов еще называют УГО (Условное графическое обозначение).

Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.

Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки»). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой. В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.

У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.

Обычно где какой вывод определяют по справочнику, но можно просто . Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).

Слева изображена картинка для транзистора p-n-p типа, при прозвонке создается ощущение (посредством показаний мультиметра), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора n-p-n типа диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.

Принцип работы биполярного транзистора

А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.

Это изображение лучше всего объясняет принцип работы транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h21Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги ).

  1. Коллектор имеет более положительный потенциал, чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

Коэффициент усиления по току.

Его также обозначают как

Исходы из выше сказанного транзистор может работать в четырех режимах:

  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате ток базы отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора. В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Для транзисторных схем напряжения не играют большой роли, важны лишь токи. Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

На сколько мы знаем, что значение тока это характеристика нагрузки.

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате мы вполне можем найти сопротивление резистора

Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.

Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.

Все дело в том, что здесь есть небольшой нюанс.

Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти 🙂

Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае мы взяли резистор 4,3кОм).

Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.

В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.

Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.

Эмиттерный повторитель

Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.

Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.

Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.

Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.

«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством. Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока ! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора. И в результате получилась вот такая формула.

Теперь я думаю понятно в чем суть схемы эмиттерного повторителя, только это еще не все.

Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.

Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!

Где транзисторы купить?

Как и все другие радиокомпоненты транзисторы можно купить в любом ближайшем магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине . Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.

Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, и так сказать вдохнуть в старый радиокомпонет новую жизнь.

Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.

Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.

Желаю вам удачи, успехов и солнечного настроения!

С н/п Владимир Васильев

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

В этом цикле статей мы попытаемся просто и доходчиво рассказать о таких непростых компонентах, как транзисторы.

Сегодня этот полупроводниковый элемент встречается почти на всех печатных платах, в любом электронном устройстве (в сотовых телефонах, в радиоприёмниках, в компьютерах и другой электронике). Транзисторы являются основой для построения микросхем логики, памяти, микропроцессоров… Вот давайте и разберёмся, что это чудо из себя представляет, как работает и чем вызвана такая широта его применения.

Транзистор — это электронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий с помощью входного сигнала управлять током.

Многие считают, что транзистор усиливает входной сигнал. Спешу огорчить, — сами по себе, без внешнего источника питания, транзисторы ничего не усилят (закон сохранения энергии ещё никто не отменял). На транзисторе можно построить усилитель, но это лишь одно из его применений, и то, для получения усиленного сигнала нужна специальная схема, которая проектируется и рассчитывается под определённые условия, плюс обязательно источник питания.

Сам по себе транзистор может только управлять током.

Что нужно знать из самого важного? Транзисторы делятся на 2 большие группы: биполярные и полевые. Эти 2 группы отличаются по структуре и принципу действия, поэтому про каждую из этих групп мы поговорим отдельно.

Итак, первая группа — биполярные транзисторы .

Эти транзисторы состоят из трёх слоёв полупроводника и делятся по структуре на 2 типа: pnp и npn . Первый тип (pnp) иногда называют транзисторами прямой проводимости, а второй тип (npn) — транзисторами обратной проводимости.

Что означают эти буквы? Чем отличаются эти транзисторы? И почему именно двух проводимостей? Как обычно — истина где-то рядом. Всё гениальное — просто. N — negative (англ.) — отрицательный. P — positive (англ.) — положительный. Это обозначение типов проводимостей полупроводниковых слоёв из которых транзистор состоит. «Положительный» — слой полупроводника с «дырочной» проводимостью (в нём основные носители заряда имеют положительный знак), «отрицательный» — слой полупроводника с «электронной» проводимостью (в нём основные носители заряда имеют
отрицательный знак).

Структура и обозначение биполярных транзисторов на схемах показаны на рисунке справа. У каждого вывода имеется своё название. Э — эмиттер, К — коллектор, Б — база. Как на схеме узнать базовый вывод? Легко. Он обозначается площадкой, в которую упираются коллектор и эмиттер. А как узнать эмиттер? Тоже легко, — это вывод со стрелочкой. Оставшийся вывод — это коллектор. Стрелочка на эмиттере всегда показывает направление тока. Соответственно, для npn транзисторов — ток втекает через коллектор и базу, а вытекает из эмиттера, для pnp транзисторов наоборот, — ток втекает через эмиттер, а вытекает через коллектор и базу.

Тонем в теории глубже… Три слоя полупроводника образуют в транзисторе два pn-перехода. Один — между эмиттером и базой, его обычно называют эмиттерный, второй — между коллектором и базой, его обычно называют коллекторный.

На каждом из двух pn-переходов может быть прямое или обратное смещение, поэтому в работе транзистора выделяют четыре основных режима, в зависимости от смещения pn-переходов (помним да, что если на стороне с проводимостью p-типа напряжение больше, чем на стороне с проводимостью n-типа, то это прямое смещение pn-перехода, если всё наоборот, то обратное). Ниже, на рисунках, иллюстрирующих каждый режим, стрелочками показано направление от большего напряжения к меньшему (это не направление тока!). Так легче ориентироваться: если стрелочка направлена от «p» к «n» — это прямое смещение pn-перехода, если от «n» к «p» — это обратное смещение.

Режимы работы биполярного транзистора :

1) Если на эмиттерном pn-переходе прямое смещение, а на коллекторном — обратное, то транзистор находится в нормальном активном режиме (иногда говорят просто: «активный режим», — опуская слово нормальный). В этом режиме ток коллектора зависит от тока базы и связан с ним следующим соотношением: Iк=Iб*β.

Активный режим используется при построении транзисторных усилителей.

2) Если на обоих переходах прямое смещение — транзистор находится в режиме насыщения . При этом ток коллектора перестаёт зависеть от тока базы в соответствии с указанной выше формулой (в которой был коэффициент β), он перестаёт увеличиваться, даже если продолжать увеличивать ток базы. В этом случае говорят, что транзистор полностью открыт или просто открыт. Чем глубже мы уходим в область насыщения — тем больше ломается зависимость Iк=Iб*β. Внешне это выглядит так, как будто коэффициент β уменьшается. Ещё скажу, что есть такое понятие, как коэффициент насыщения. Он определяется как отношение реального тока базы (того, который у вас есть в данный момент) к току базы в пограничном состоянии между активным режимом и насыщением.

3) Если у нас на обоих переходах обратное смещение — транзистор находится в режиме отсечки . При этом ток через него не течёт (за исключением очень маленьких токов утечки — обратных токов через pn-переходы). В этом случае говорят, что транзистор полностью закрыт или просто закрыт.

Режимы насыщения и отсечки используются при построении транзисторных ключей.

4) Если на эмиттерном переходе обратное смещение, а на коллекторном — прямое, то транзистор попадает в инверсный активный режим . Этот режим является довольно экзотическим и используется редко. Несмотря на то, что на наших рисунках эмиттер не отличается от коллектора и по сути они должны быть равнозначны (посмотрите ещё раз на самый верхний рисунок, — на первый взгляд ничего не изменится, если поменять местами коллектор и эмиттер), на самом деле у них есть конструктивные отличия (например в размерах) и равнозначными они не являются. Именно из-за этой неравнозначности и существует разделение на «нормальный активный режим» и «инверсный активный режим».

Иногда ещё выделяют пятый, так называемый, «барьерный режим». В этом случае база транзистора закорочена с коллектором. По сути правильнее было бы говорить не о каком-то особом режиме, а об особом способе включения. Режим тут вполне обычный — близкий к пограничному состоянию между активным режимом и насыщением. Его можно получить и не только закорачивая базу с коллектором. В данном конкретном случае вся фишка в том, что при таком способе включения, как бы мы не меняли напряжение питания или нагрузку — транзистор всё равно останется в этом самом пограничном режиме. То есть транзистор в этом случае будет эквивалентен диоду.

Биполярный транзистор управляется током. То есть, для того, чтобы между коллектором и эмиттером мог протекать ток (по другому говоря, чтобы транзистор открылся), — должен протекать ток между эмиттером и базой (или между коллектором и базой — для инверсного режима). Более того, величина тока базы и максимально возможного тока через коллектор (при таком токе базы) связаны постоянным коэффициентом β (коэффициент передачи тока базы): I Б *β=I K .

Кроме параметра β используется ещё один коэффициент: коэффициент передачи эмиттерного тока (α). Он равен отношению тока коллектора к току эмиттера: α=Iк/Iэ. Значение этого коэффициента обычно близко к единице (чем ближе к единице — тем лучше). Коэффициенты α и β связаны между собой следующим соотношением: β=α/(1-α).

В отечественных справочниках часто вместо коэффициента β указывают коэффициент h 21Э (коэффициент усиления по току в схеме с общим эмиттером), в забугорной литературе иногда вместо β можно встретить h FE . Ничего страшного, обычно можно считать, что все эти коэффициенты равны, а называют их зачастую просто «коэффициент усиления транзистора».

Что нам это даёт и зачем нам это надо? На рисунке слева изображены простейшие схемы. Они эквивалентны, но построены с участием транзисторов разных проводимостей. Также присутствуют: нагрузка, в виде лампочки накаливания, переменный резистор и постоянный резистор.

Смотрим на левую схему. Что там происходит? Представим себе, что ползунок переменного резистора в верхнем положении. При этом на базе транзистора напряжение равно напряжению на эмиттере, ток базы равен нулю, следовательно ток коллектора тоже равен нулю (I К =β*I Б) — транзистор закрыт, лампа не светится. Начинаем опускать ползунок вниз
— напряжение на нём начинает опускаться ниже, чем на эмиттере — появляется ток из эмиттера в базу (ток базы) и одновременно с этим — ток из эмиттера в коллектор (транзистор начнёт открываться). Лампа начинает светиться, но не в полный накал. Чем ниже мы будем перемещать ползунок переменного резистора — тем ярче будет гореть лампа.

И тут, внимание! Если мы начнём перемещать ползунок переменного резистора вверх — то транзистор начнёт закрываться, а токи из эмиттера в базу и из эмиттера в коллектор — начнут уменьшаться. На правой схеме всё то же самое, только с транзистором другой проводимости.

Рассмотренный режим работы транзистора как раз является активным. В чём суть? Ток управляет током? Именно, но фишка в том, что коэффициент β может измеряться десятками и
даже сотнями. То есть для того, чтобы сильно менять ток, протекающий из эмиттера в коллектор, нам достаточно лишь чуть-чуть изменять ток, протекающий из эмиттера в базу.

В активном режиме транзистор (с соответствующей обвязкой) используется в качестве усилителя.

Мы устали… отдохнём немного…

И снова вперёд!

Теперь разберёмся с работой транзистора в качестве ключа. Смотрим на левую схему. Пусть переключатель S будет замкнут в положении 1. При этом база транзистора через резистор R притянута к плюсу питания, поэтому ток между эмиттером и базой отсутствует и транзистор закрыт. Представим, что мы перевели переключатель S в положение 2. Напряжение на базе становится меньше, чем на эмиттере, — появляется ток между эмиттером и базой (его величина определяется сопротивлением R). Сразу возникает ток КЭ. Транзистор открывается, лампа загорается. Если мы снова вернём переключатель S в положение 1 — транзистор закроется, лампа погаснет. (на правой схеме всё то же самое, только транзистор другой проводимости)

В этом случае говорят, что транзистор работает в качестве ключа. В чём суть? Транзистор переключается между двумя состояниями — открытым и закрытым. Обычно при использовании транзистора в качестве ключа — стараются, чтобы в открытом состоянии транзистор был близок к насыщению (при этом падение напряжения между коллектором и эмиттером, а значит и потери на транзисторе, — минимальны).Для этого специальным образом рассчитывают ограничительный резистор в цепи базы. Состояний глубокого насыщения и глубокой отсечки обычно стараются избежать, потому что в этом случае увеличивается время переключения ключа из одного состояния в другое.

Небольшой пример расчётов. Представим себе, что мы управляем лампой накаливания 12В, 50мА через транзистор. Транзистор у нас работает в качестве ключа, поэтому в открытом состоянии должен быть близок к насыщению. Падение напряжения между коллектором и эмиттером учитывать не будем, поскольку для режима насыщения оно на порядок меньше напряжения питания. Так как через лампу течёт ток 50 мА, то нам нужно выбрать транзистор с максимальным током КЭ не менее 62,5 мА (обычно рекомендуют использовать компоненты на 75% от их максимальных параметров, это такой своеобразный запас). Открываем справочник и ищем подходящий p-n-p транзистор. Например КТ361. В нашем случае по току подходят с буквенными индексами «а, б, в, г», так как максимальное напряжение КЭ у них 20В, а у нас в задаче всего 12В.

Предположим, что использовать будем КТ361А, с коэффициентом усиления от 20 до 90. Так как нам нужно, чтобы транзистор гарантированно открылся полностью, — в расчёте будем использовать минимальный Кус=20. Теперь думаем. Какой минимальный ток должен течь между эмиттером и базой, чтобы через КЭ обеспечить ток 50 мА?

50 мА/ 20 раз = 2,5 мА

Токоограничивающий резистор какого номинала нужно поставить, чтобы пустить через БЭ ток 2,5 мА?

Тут всё просто. Закон Ома: I=U/R. Следовательно R=(12 В питания — 0,65 В потери на pn-переходе БЭ) / 0,0025 А = 4540 Ом. Так как 2,5 мА — это минимальный ток, который в нашем случае должен протекать из эмиттера в базу, то нужно выбрать из стандартного ряда ближайший резистор меньшего сопротивления. Например, с 5% отклонением это будет резистор 4,3 кОм.

Теперь о токе. Для зажигания лампы с номинальным током 50 мА нам нужно коммутировать ток всего 2,5 мА. И это при использовании ширпотребовского, копеечного транзистора, с низким Кус, разработанного 40 лет назад. Чувствуете разницу? Насколько можно уменьшить габариты выключателей (а значит и их стоимость) при использовании транзисторов.

Вернёмся опять к теории.

В рассмотренных выше примерах мы использовали только одну из схем включения транзистора. Всего же, в зависимости от того, куда мы подаём управляющий сигнал и откуда снимаем выходной сигнал (от того, какой электрод для этих сигналов является общим) выделяют 3 основных схемы включения биполярных транзисторов (ну, логично, да? — у транзистора 3 вывода, значит если делить схемы по принципу, что один из выводов общий, то всего может быть 3 схемы):

1) Схема с общим эмиттером .

Если считать, что входной ток — это ток базы, входное напряжение — это напряжение на переходе БЭ, выходной ток — ток коллектора и выходное напряжение — это напряжение между коллектором и эмиттером, то можно записать, что: Iвых/Iвх=Iк/Iб=β , Rвх=Uбэ/Iб.

Кроме того, так как Uвых=Eпит-Iк*R, то видно, что, во-первых, выходное напряжение легко можно сделать гораздо выше входного, а во-вторых, что выходное напряжение инвертировано по отношению ко входному (когда Uбэ=Uвх увеличивается и входной ток растёт — выходной ток также растёт, но Uкэ=Uвых при этом уменьшается).

Такая схема включения (для краткости её обозначают ОЭ) является наиболее распространённой, поскольку позволяет усилить как ток, так и напряжение, то есть позволяет получить максимальное усиление мощности. Замечу, что эта дополнительная мощность у усиленного сигнала берётся не из воздуха и не от самого транзистора, а от источника питания (Eпит), без которого транзистор ничего не сможет усилить и вообще никакого тока в выходной цепи не будет. (Я думаю, — мы позже, в отдельной статье, про то, как именно работают транзисторные усилители и как их рассчитывать, подробнее напишем).

2) Схема с общей базой .

Здесь входной ток — это ток эмиттера, входное напряжение — это напряжение на переходе БЭ, выходной ток — ток коллектора, а выходное напряжение — это напряжение на включенной в цепь коллектора нагрузке. Для этой схемы: Iвых≈Iвх, т.к. Iк≈Iэ, Rвх=Uбэ/Iэ.

Такая схема (ОБ) усиливает только напряжение и не усиливает ток. Сигнал в данном случае по фазе не сдвигается.

3) Схема с общим коллектором (эмиттерный повторитель).

Здесь входной ток — это ток базы, а входное напряжение подключено к переходу БЭ транзистора и нагрузке, выходной ток — ток эмиттера, а выходное напряжение — это напряжение на включенной в цепь эмиттера нагрузке. Для этой схемы: Iвых/Iвх=Iэ/Iб=(I К +I Б)/I Б =β+1, т.к. обычно коэффициент β достаточно большой, то иногда считают Iвых/Iвх≈β. Rвх=Uбэ/Iб+R. Uвых/Uвх=(Uбэ+Uвых)/Uвых≈1.

Как видим, такая схема (ОК) усиливает ток и не усиливает напряжение. Сигнал в данном случае по фазе не сдвигается. Кроме того, данная схема имеет самое большое входное сопротивление.

Оранжевыми стрелками на приведённых выше схемах показаны контура протекания токов, создаваемых источником питания выходной цепи (Епит) и самим входным сигналом (Uвх). Как видите, в схеме с ОБ ток, создаваемый Eпит, протекает не только через транзистор, но и через источник усиливаемого сигнала, а в схеме с ОК, наоборот, — ток, создаваемый входным сигналом, протекает не только через транзистор, но и через нагрузку (по этим приметам можно легко отличить одну схему включения от другой).

Ну и на последок поговорим о том, как проверить биполярный транзистор на исправность. В большинстве случаев о исправности транзистора можно судить по состоянию pn-переходов. Если рассматривать эти pn-переходы независимо друг от друга, то транзистор можно представить как совокупность двух диодов (как на рисунке слева). В общем-то взаимное влияние pn-переходов и делает транзистор транзистором, но при проверке можно с этим взаимным влиянием не считаться, поскольку напряжение к выводам транзистора мы прикладываем попарно (к двум выводам из трёх). Соответственно, проверить эти pn-переходы можно обычным мультиметром в режиме проверки диодов. При подключении красного щупа (+) к катоду диода, а чёрного к аноду — pn-переход будет закрыт (мультиметр показывает бесконечно большое сопротивление), если поменять щупы местами — pn-переход будет открыт (мультиметр показывает падение напряжения на открытом pn-переходе, обычно 0,6-0,8 В). При подключении щупов между коллектором и эмиттером мультиметр будет показывать бесконечно большое сопротивление, независимо от того какой щуп подключен к коллектору, а какой к эмиттеру.

Продолжение следует…

Транзистор - повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.

В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей - разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено.

Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:

    TO-92 - компактный, для небольших нагрузок

    TO-220AB - массивный, хорошо рассеивающий тепло, для больших нагрузок

Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.

Биполярные транзисторы

Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:

    Коллектор (collector) - на него подаётся высокое напряжение, которым хочется управлять

    База (base) - через неё подаётся небольшой ток , чтобы разблокировать большой; база заземляется, чтобы заблокировать его

    Эмиттер (emitter) - через него проходит ток с коллектора и базы, когда транзистор «открыт»

Основной характеристикой биполярного транзистора является показатель h fe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер.

Например, если h fe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА.

Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению.

NPN и PNP

Описанный выше транзистор - это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative - это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive - с избытком положительных (p-doped).

NPN более эффективны и распространены в промышленности.

PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток.

Полевые транзисторы

Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения : ток через затвор, в отличие от биполярных транзисторов, не идёт.

Полевые транзисторы обладают тремя контактами:

    Сток (drain) - на него подаётся высокое напряжение, которым хочется управлять

    Затвор (gate) - на него подаётся напряжение, чтобы разрешить течение тока; затвор заземляется, чтобы заблокировать ток.

    Исток (source) - через него проходит ток со стока, когда транзистор «открыт»

N-Channel и P-Channel

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток - она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на токоограничивающий резистор R . Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер - транзистор - земля. Главное - не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

здесь U d - это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.

Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае - это 100 мА. Допустим для используемого транзистора h fe = 100, тогда нам будет достаточно управляющего тока в 1 мА

Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм - хороший выбор.

Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер - затвор - исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET, позволяет управлять очень мощными компонентами.