Теория вероятности формула математического ожидания. Математическое ожидание – это распределение вероятностей случайной величины

2. Основы теории вероятностей

Математическое ожидание

Рассмотрим случайную величину с числовыми значениями. Часто оказывается полезным связать с этой функцией число – ее «среднее значение» или, как говорят, «среднюю величину», «показатель центральной тенденции». По ряду причин, некоторые из которых будут ясны из дальнейшего, в качестве «среднего значения» обычно используют математическое ожидание.

Определение 3. Математическим ожиданием случайной величины Х называется число

т.е. математическое ожидание случайной величины – это взвешенная сумма значений случайной величины с весами, равными вероятностям соответствующих элементарных событий.

Пример 6. Вычислим математическое ожидание числа, выпавшего на верхней грани игрального кубика. Непосредственно из определения 3 следует, что

Утверждение 2. Пусть случайная величина Х принимает значения х 1 , х 2 ,…, х m . Тогда справедливо равенство

(5)

т.е. математическое ожидание случайной величины – это взвешенная сумма значений случайной величины с весами, равными вероятностям того, что случайная величина принимает определенные значения.

В отличие от (4), где суммирование проводится непосредственно по элементарным событиям, случайное событие может состоять из нескольких элементарных событий.

Иногда соотношение (5) принимают как определение математического ожидания. Однако с помощью определения 3, как показано далее, более легко установить свойства математического ожидания, нужные для построения вероятностных моделей реальных явлений, чем с помощью соотношения (5).

Для доказательства соотношения (5) сгруппируем в (4) члены с одинаковыми значениями случайной величины :

Поскольку постоянный множитель можно вынести за знак суммы, то

По определению вероятности события

С помощью двух последних соотношений получаем требуемое:

Понятие математического ожидания в вероятностно-статистической теории соответствует понятию центра тяжести в механике. Поместим в точки х 1 , х 2 ,…, х m на числовой оси массы P (X = x 1 ), P (X = x 2 ),…, P (X = x m ) соответственно. Тогда равенство (5) показывает, что центр тяжести этой системы материальных точек совпадает с математическим ожиданием, что показывает естественность определения 3.

Утверждение 3. Пусть Х – случайная величина, М(Х) – ее математическое ожидание, а – некоторое число. Тогда

1) М(а)=а; 2) М(Х-М(Х))=0; 3) М[(X - a ) 2 ]= M [(X - M (X )) 2 ]+(a - M (X )) 2 .

Для доказательства рассмотрим сначала случайную величину, являющуюся постоянной, т.е. функция отображает пространство элементарных событий в единственную точку а . Поскольку постоянный множитель можно выносить за знак суммы, то

Если каждый член суммы разбивается на два слагаемых, то и вся сумма разбивается на две суммы, из которых первая составлена из первых слагаемых, а вторая – из вторых. Следовательно, математическое ожидание суммы двух случайных величин Х+У , определенных на одном и том же пространстве элементарных событий, равно сумме математических ожиданий М(Х) и М(У) этих случайных величин:

М(Х+У) = М(Х) + М(У).

А потому М(Х-М(Х)) = М(Х) - М(М(Х)). Как показано выше, М(М(Х)) = М(Х). Следовательно, М(Х-М(Х)) = М(Х) - М(Х) = 0.

Поскольку (Х - а) 2 = {(X M (X )) + (M (X ) - a )} 2 = (X - M (X )) 2 + 2(X - M (X ))(M (X ) - a ) + (M (X ) – a ) 2 , то M [(Х - а) 2 ] = M (X - M (X )) 2 + M {2(X - M (X ))(M (X ) - a )} + M [(M (X ) – a ) 2 ]. Упростим последнее равенство. Как показано в начале доказательства утверждения 3, математическое ожидание константы – сама эта константа, а потому M [(M (X ) – a ) 2 ] = (M (X ) – a ) 2 . Поскольку постоянный множитель можно выносить за знак суммы, то M {2(X - M (X ))(M (X ) - a )} = 2(M (X ) - a )М(X - M (X )). Правая часть последнего равенства равна 0, поскольку, как показано выше, М(Х-М(Х))=0. Следовательно, М[(X - a ) 2 ]= M [(X - M (X )) 2 ]+(a - M (X )) 2 , что и требовалось доказать.

Из сказанного вытекает, что М[(X - a ) 2 ] достигает минимума по а , равного M [(X - M (X )) 2 ], при а = М(Х), поскольку второе слагаемое в равенстве 3) всегда неотрицательно и равно 0 только при указанном значении а .

Утверждение 4. Пусть случайная величина Х принимает значения х 1 , х 2 ,…, х m , а f – некоторая функция числового аргумента. Тогда

Для доказательства сгруппируем в правой части равенства (4), определяющего математическое ожидание, члены с одинаковыми значениями :

Пользуясь тем, что постоянный множитель можно выносить за знак суммы, и определением вероятности случайного события (2), получаем

что и требовалось доказать.

Утверждение 5. Пусть Х и У – случайные величины, определенные на одном и том же пространстве элементарных событий, а и b – некоторые числа. Тогда M (aX + bY )= aM (X )+ bM (Y ).

С помощью определения математического ожидания и свойств символа суммирования получаем цепочку равенств:

Требуемое доказано.

Выше показано, как зависит математическое ожидание от перехода к другому началу отсчета и к другой единице измерения (переход Y =aX +b ), а также к функциям от случайных величин. Полученные результаты постоянно используются в технико-экономическом анализе, при оценке финансово-хозяйственной деятельности предприятия, при переходе от одной валюты к другой во внешнеэкономических расчетах, в нормативно-технической документации и др. Рассматриваемые результаты позволяют применять одни и те же расчетные формулы при различных параметрах масштаба и сдвига.

Предыдущая

Математическим ожиданием (средним значением) случайной величины X , заданной на дискретном вероятностном пространстве, называется число m =M[X]=∑x i p i , если ряд сходится абсолютно.

Назначение сервиса . С помощью сервиса в онлайн режиме вычисляются математическое ожидание, дисперсия и среднеквадратическое отклонение (см. пример). Кроме этого строится график функции распределения F(X) .

Свойства математического ожидания случайной величины

  1. Математическое ожидание постоянной величины равно ей самой: M[C]=C , C – постоянная;
  2. M=C M[X]
  3. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: M=M[X]+M[Y]
  4. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: M=M[X] M[Y] , если X и Y независимы.

Свойства дисперсии

  1. Дисперсия постоянной величины равна нулю: D(c)=0.
  2. Постоянный множитель можно вынести из-под знака дисперсии, возведя его в квадрат: D(k*X)= k 2 D(X).
  3. Если случайные величины X и Y независимы, то дисперсия суммы равна сумме дисперсий: D(X+Y)=D(X)+D(Y).
  4. Если случайные величины X и Y зависимы: D(X+Y)=DX+DY+2(X-M[X])(Y-M[Y])
  5. Для дисперсии справедлива вычислительная формула:
    D(X)=M(X 2)-(M(X)) 2

Пример . Известны математические ожидания и дисперсии двух независимых случайных величин X и Y: M(x)=8 , M(Y)=7 , D(X)=9 , D(Y)=6 . Найти математическое ожидание и дисперсию случайное величины Z=9X-8Y+7 .
Решение. Исходя из свойств математического ожидания: M(Z) = M(9X-8Y+7) = 9*M(X) - 8*M(Y) + M(7) = 9*8 - 8*7 + 7 = 23.
Исходя из свойств дисперсии: D(Z) = D(9X-8Y+7) = D(9X) - D(8Y) + D(7) = 9^2D(X) - 8^2D(Y) + 0 = 81*9 - 64*6 = 345

Алгоритм вычисления математического ожидания

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению сопоставить отличную от нуля вероятность.
  1. Поочередно умножаем пары: x i на p i .
  2. Складываем произведение каждой пары x i p i .
    Например, для n = 4: m = ∑x i p i = x 1 p 1 + x 2 p 2 + x 3 p 3 + x 4 p 4
Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых положительны.

Пример №1 .

x i 1 3 4 7 9
p i 0.1 0.2 0.1 0.3 0.3

Математическое ожидание находим по формуле m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 1*0.1 + 3*0.2 + 4*0.1 + 7*0.3 + 9*0.3 = 5.9
Дисперсию находим по формуле d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 1 2 *0.1 + 3 2 *0.2 + 4 2 *0.1 + 7 2 *0.3 + 9 2 *0.3 - 5.9 2 = 7.69
Среднее квадратическое отклонение σ(x) .
σ = sqrt(D[X]) = sqrt(7.69) = 2.78

Пример №2 . Дискретная случайная величина имеет следующий ряд распределения:

Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a , математическое ожидание и среднее квадратическое отклонение этой случайной величины.

Решение. Величину a находим из соотношения: Σp i = 1
Σp i = a + 0,32 + 2 a + 0,41 + 0,03 = 0,76 + 3 a = 1
0.76 + 3 a = 1 или 0.24=3 a , откуда a = 0.08

Пример №3 . Определить закон распределения дискретной случайной величины, если известна её дисперсия, причем х 1 x 1 =6; x 2 =9; x 3 =x; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3
d(x)=12,96

Решение.
Здесь надо составить формулу нахождения дисперсии d(x) :
d(x) = x 1 2 p 1 +x 2 2 p 2 +x 3 2 p 3 +x 4 2 p 4 -m(x) 2
где матожидание m(x)=x 1 p 1 +x 2 p 2 +x 3 p 3 +x 4 p 4
Для наших данных
m(x)=6*0,3+9*0,3+x 3 *0,1+15*0,3=9+0.1x 3
12,96 = 6 2 0,3+9 2 0,3+x 3 2 0,1+15 2 0,3-(9+0.1x 3) 2
или -9/100 (x 2 -20x+96)=0
Соответственно надо найти корни уравнения, причем их будет два.
x 3 =8, x 3 =12
Выбираем тот, который удовлетворяет условию х 1 x 3 =12

Закон распределения дискретной случайной величины
x 1 =6; x 2 =9; x 3 =12; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности.

Пусть случайная величина может принимать только значения вероятности которых соответственно равны Тогда математическое ожидание случайной величины определяется равенством

Если дискретная случайная величина принимает счетное множество возможных значений, то

Причем математическое ожидание существует, если ряд в правой части равенства сходится абсолютно.

Замечание. Из определения следует, что математическое ожидание дискретной случайной величины есть неслучайная (постоянная) величина.

Определение математического ожидания в общем случае

Определим математическое ожидание случайной величины, распределение которой не обязательно дискретно. Начнем со случая неотрицательных случайных величин. Идея будет заключаться в том, чтобы аппроксимировать такие случайные величины с помощью дискретных, для которых математическое ожидание уже определено, а математическое ожидание положить равным пределу математических ожиданий приближающих ее дискретных случайных величин. Кстати, это очень полезная общая идея, состоящая в том, что некоторая характеристика сначала определяется для простых объектов, а затем для более сложных объектов она определяется с помощью аппроксимации их более простыми.

Лемма 1. Пусть есть произвольная неотрицательная случайная величина. Тогда существует последовательность дискретных случайных величин, таких, что


Доказательство. Разобьем полуось на равные отрезки длины и определим

Тогда свойства 1 и 2 легко следуют из определения случайной величины, и

Лемма 2. Пусть -неотрицательная случайная величина и и две последовательности дискретных случайных величин, обладающих свойствами 1-3 из леммы 1. Тогда

Доказательство. Отметим, что для неотрицательных случайных величин мы допускаем

В силу свойства 3 легко видеть, что существует последовательность положительных чисел, такая что

Отсюда следует, что

Используя свойства математических ожиданий для дискретных случайных величин, получаем

Переходя к пределу при получаем утверждение леммы 2.

Определение 1. Пусть - неотрицательная случайная величина, -последовательность дискретных случайных величин, обладающих свойствами 1-3 из леммы 1. Математическим ожиданием случайной величины называется число

Лемма 2 гарантирует, что не зависит от выбора аппроксимирующей последовательности.

Пусть теперь - произвольная случайная величина. Определим

Из определения и легко следует, что

Определение 2. Математическим ожиданием произвольной случайной величины называется число

Если хотя бы одно из чисел в правой части этого равенства конечно.

Свойства математического ожидания

Свойство 1. Математическое ожидание постоянной величины равно самой постоянной:

Доказательство. Будем рассматривать постоянную как дискретную случайную величину, которая имеет одно возможное значение и принимает его с вероятностью следовательно,

Замечание 1. Определим произведение постоянной величины на дискретную случайную величину как дискретную случайную возможные значения которой равны произведениям постоянной на возможные значения; вероятности возможных значений равны вероятностям соответствующих возможных значений Например, если вероятность возможного значения равна то вероятность того, что величина примет значение также равна

Свойство 2. Постоянный множитель можно выносить за знак математического ожидания:

Доказательство. Пусть случайная величина задана законом распределения вероятностей:

Учитывая замечание 1, напишем закон распределения случайной величины

Замечание 2. Прежде, чем перейти к следующему свойству, укажем, что две случайные величины называют независимыми, если закон распределения одной из них не зависит от того, какие возможные значения приняла другая величина. В противном случае случайные величины зависимы. Несколько случайных величин называют взаимно независимыми, если законы распределения любого числа их них не зависят от того, какие возможные значения приняли остальные величины.

Замечание 3. Определим произведение независимых случайных величин и как случайную величину возможные значения которой равны произведениям каждого возможного значения на каждое возможное значение вероятности возможных значений произведения равны произведениям вероятностей возможных значений сомножителей. Например, если вероятность возможного значения равна, вероятность возможного значения равна то вероятность возможного значения равна

Свойство 3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

Доказательство. Пусть независимые случайные величины и заданы своими законами распределения вероятностей:

Составим все значения, которые может принимать случайная величина Для этого перемножим все возможные значения на каждое возможное значение; в итоге получим и учитывая замечание 3, напишем закон распределения предполагая для простоты, что все возможные значения произведения различны (если это не так, то доказательство проводится аналогично):

Математическое ожидание равно сумме произведений всех возможных значений на их вероятности:

Следствие. Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий.

Свойство 4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых:

Доказательство. Пусть случайные величины и заданы следующими законами распределения:

Составим все возможные значения величины Для этого к каждому возможному значению прибавим каждое возможное значение; получим Предположим для простоты, что эти возможные значения различны (если это не так, то доказательство проводится аналогично), и обозначим их вероятности соответственно через и

Математическое ожидание величины равно сумме произведений возможных значений на их вероятности:

Докажем, что Событие, состоящее в том, что примет значение (вероятность этого события равна), влечет за собой событие, которое состоит в том, что примет значение или (вероятность этого события по теореме сложения равна), и обратно. Отсюда и следует, что Аналогично доказываются равенства

Подставляя правые части этих равенств в соотношение (*), получим

или окончательно

Дисперсия и среднее квадратическое отклонение

На практике часто требуется оценить рассеяние возможных значений случайной величины вокруг ее среднего значения. Например, в артиллерии важно знать, насколько кучно лягут снаряды вблизи цели, которая должна быть поражена.

На первый взгляд может показаться, что для оценки рассеяния проще всего вычислить все возможные значения отклонения случайной величины и затем найти их среднее значение. Однако такой путь ничего не даст, так как среднее значение отклонения, т.е. для любой случайной величины равно нулю. Это свойство объясняется тем, что одни возможные отклонения положительны, а другие - отрицательны; в результате их взаимного погашения среднее значение отклонения равно нулю. Эти соображения говорят о целесообразности заменить возможные отклонения их абсолютными значениями или их квадратами. Так и поступают на деле. Правда, в случае, когда возможные отклонения заменяют их абсолютными значениями, приходится оперировать с абсолютными величинами, что приводит иногда к серьезным затруднениям. Поэтому чаще всего идут по другому пути, т.е. вычисляют среднее значение квадрата отклонения, которое и называется дисперсией.

Случайные величины помимо законов распределения могут описываться также числовыми характеристиками .

Математическим ожиданием М (x) случайной величины называется ее среднее значение.

Математическое ожидание дискретной случайной величины вычисляется по формуле

где значения случайной величины, р i - ихвероятности.

Рассмотрим свойства математического ожидания:

1. Математическое ожидание константы равно самой константе

2. Если случайную величину умножить на некоторое число k, то и математическое ожидание умножится на это же число

М (kx) = kМ (x)

3. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий

М (x 1 + x 2 + … + x n) = М (x 1) + М (x 2) +…+ М (x n)

4. М (x 1 - x 2) = М (x 1) - М (x 2)

5. Для независимых случайных величин x 1 , x 2 , … x n математическое ожидание произведения равно произведению их математических ожиданий

М (x 1 , x 2 , … x n) = М (x 1) М (x 2) … М (x n)

6. М (x - М (x)) = М (x) - М (М(x)) = М (x) - М (x) = 0

Вычислим математическое ожидание для случайной величины из Примера 11.

М (x) = = .

Пример 12. Пусть случайные величины x 1 , x 2 заданы соответственно законами распределения:

x 1 Таблица 2

x 2 Таблица 3

Вычислим М (x 1) и М (x 2)

М (x 1) = (- 0,1) 0,1 + (- 0,01) 0,2 + 0 · 0,4 + 0,01 · 0,2 + 0,1 · 0,1 = 0

М (x 2) = (- 20) 0,3 + (- 10) 0,1 + 0 · 0,2 + 10 · 0,1 + 20 · 0,3 = 0

Математические ожидания обеих случайных величин одинаковы- они равны нулю. Однако характер их распределения различный. Если значения x 1 мало отличаются от своего математического ожидания, то значения x 2 в большой степени отличаются от своего математического ожидания, и вероятности таких отклонений не малы. Эти примеры показывают, что по среднему значению нельзя определить, какие отклонения от него имеют место как в меньшую, так и в большую сторону. Так при одинаковой средней величине выпадающих в двух местностях осадков за год нельзя сказать, что эти местности одинаково благоприятны для сельскохозяйственных работ. Аналогично по показателю средней заработной платы не возможно судить об удельном весе высоко- и низкооплачиваемых работниках. Поэтому, вводится числовая характеристика – дисперсия D (x) , которая характеризует степень отклонения случайной величины от своего среднего значения:

D (x) = M (x - M (x)) 2 . (2)

Дисперсия –это математическое ожидание квадрата отклонения случайной величины от математического ожидания. Для дискретной случайной величины дисперсия вычисляется по формуле:

D (x) = = (3)

Из определения дисперсии следует, что D (x) 0.

Свойства дисперсии:

1. Дисперсия константы равна нулю

2. Если случайную величину умножить на некоторое число k , то дисперсия умножится на квадрат этого числа

D (kx) = k 2 D (x)

3. D (x) = М (x 2) – М 2 (x)

4. Для попарно независимых случайных величин x 1 , x 2 , … x n дисперсия суммы равна сумме дисперсий.

D (x 1 + x 2 + … + x n) = D (x 1) + D (x 2) +…+ D (x n)

Вычислим дисперсию для случайной величины из Примера 11.

Математическое ожидание М (x) = 1. Поэтому по формуле (3) имеем:

D (x) = (0 – 1) 2 ·1/4 + (1 – 1) 2 ·1/2 + (2 – 1) 2 ·1/4 =1·1/4 +1·1/4= 1/2

Отметим, что дисперсию вычислять проще, если воспользоваться свойством 3:

D (x) = М (x 2) – М 2 (x).

Вычислим дисперсии для случайных величин x 1 , x 2 из Примера 12 по этой формуле. Математические ожидания обеих случайных величин равны нулю.

D (x 1) = 0,01· 0,1 + 0,0001· 0,2 + 0,0001· 0,2 + 0,01· 0,1 = 0,001 + 0,00002 + 0,00002 + 0,001 = 0,00204

D (x 2) = (-20) 2 · 0,3 + (-10) 2 · 0,1 + 10 2 · 0,1 + 20 2 · 0,3 = 240 +20 = 260

Чем ближе значение дисперсии к нулю, тем меньше разброс случайной величины относительно среднего значения.

Величина называется среднеквадратическим отклонением . Модой случайной величины x дискретного типа Md называется такое значение случайной величины, которому соответствует наибольшая вероятность.

Модой случайной величины x непрерывного типа Md , называется действительное число, определяемое как точка максимума плотности распределения вероятностей f(x).

Медианой случайной величины x непрерывного типа Mn называется действительное число, удовлетворяющее уравнению

– количество мальчиков среди 10 новорождённых.

Совершенно понятно, что это количество заранее не известно, и в очередном десятке родившихся детей может оказаться:

Либо мальчиков – один и только один из перечисленных вариантов.

И, дабы соблюсти форму, немного физкультуры:

– дальность прыжка в длину (в некоторых единицах) .

Её не в состоянии предугадать даже мастер спорта:)

Тем не менее, ваши гипотезы?

2) Непрерывная случайная величина – принимает все числовые значения из некоторого конечного или бесконечного промежутка.

Примечание : в учебной литературе популярны аббревиатуры ДСВ и НСВ

Сначала разберём дискретную случайную величину, затем – непрерывную .

Закон распределения дискретной случайной величины

– этосоответствие между возможными значениями этой величины и их вероятностями. Чаще всего закон записывают таблицей:

Довольно часто встречается термин ряд распределения , но в некоторых ситуациях он звучит двусмысленно, и поэтому я буду придерживаться «закона».

А теперь очень важный момент : поскольку случайная величина обязательно примет одно из значений , то соответствующие события образуют полную группу и сумма вероятностей их наступления равна единице:

или, если записать свёрнуто:

Так, например, закон распределения вероятностей выпавших на кубике очков имеет следующий вид:

Без комментариев.

Возможно, у вас сложилось впечатление, что дискретная случайная величина может принимать только «хорошие» целые значения. Развеем иллюзию – они могут быть любыми:

Пример 1

Некоторая игра имеет следующий закон распределения выигрыша:

…наверное, вы давно мечтали о таких задачах:) Открою секрет – я тоже. В особенности после того, как завершил работу над теорией поля .

Решение : так как случайная величина может принять только одно из трёх значений, то соответствующие события образуют полную группу , а значит, сумма их вероятностей равна единице:

Разоблачаем «партизана»:

– таким образом, вероятность выигрыша условных единиц составляет 0,4.

Контроль: , в чём и требовалось убедиться.

Ответ :

Не редкость, когда закон распределения требуется составить самостоятельно. Для этого используют классическое определение вероятности , теоремы умножения / сложения вероятностей событий и другие фишки тервера :

Пример 2

В коробке находятся 50 лотерейных билетов, среди которых 12 выигрышных, причём 2 из них выигрывают по 1000 рублей, а остальные – по 100 рублей. Составить закон распределения случайной величины – размера выигрыша, если из коробки наугад извлекается один билет.

Решение : как вы заметили, значения случайной величины принято располагать в порядке их возрастания . Поэтому мы начинаем с самого маленького выигрыша, и именно рублей.

Всего таковых билетов 50 – 12 = 38, и по классическому определению :
– вероятность того, что наудачу извлечённый билет окажется безвыигрышным.

С остальными случаями всё просто. Вероятность выигрыша рублей составляет:

Проверка: – и это особенно приятный момент таких заданий!

Ответ : искомый закон распределения выигрыша:

Следующее задание для самостоятельного решения:

Пример 3

Вероятность того, что стрелок поразит мишень, равна . Составить закон распределения случайной величины – количества попаданий после 2 выстрелов.

…я знал, что вы по нему соскучились:) Вспоминаем теоремы умножения и сложения . Решение и ответ в конце урока.

Закон распределения полностью описывает случайную величину, однако на практике бывает полезно (а иногда и полезнее) знать лишь некоторые её числовые характеристики .

Математическое ожидание дискретной случайной величины

Говоря простым языком, это среднеожидаемое значение при многократном повторении испытаний. Пусть случайная величина принимает значения с вероятностями соответственно. Тогда математическое ожидание данной случайной величины равно сумме произведений всех её значений на соответствующие вероятности:

или в свёрнутом виде:

Вычислим, например, математическое ожидание случайной величины – количества выпавших на игральном кубике очков:

Теперь вспомним нашу гипотетическую игру:

Возникает вопрос: а выгодно ли вообще играть в эту игру? …у кого какие впечатления? Так ведь «навскидку» и не скажешь! Но на этот вопрос можно легко ответить, вычислив математическое ожидание, по сути – средневзвешенный по вероятностям выигрыш:

Таким образом, математическое ожидание данной игры проигрышно .

Не верь впечатлениям – верь цифрам!

Да, здесь можно выиграть 10 и даже 20-30 раз подряд, но на длинной дистанции нас ждёт неминуемое разорение. И я бы не советовал вам играть в такие игры:) Ну, может, только ради развлечения .

Из всего вышесказанного следует, что математическое ожидание – это уже НЕ СЛУЧАЙНАЯ величина.

Творческое задание для самостоятельного исследования:

Пример 4

Мистер Х играет в европейскую рулетку по следующей системе: постоянно ставит 100 рублей на «красное». Составить закон распределения случайной величины – его выигрыша. Вычислить математическое ожидание выигрыша и округлить его до копеек. Сколько в среднем проигрывает игрок с каждой поставленной сотни?

Справка : европейская рулетка содержит 18 красных, 18 чёрных и 1 зелёный сектор («зеро»). В случае выпадения «красного» игроку выплачивается удвоенная ставка, в противном случае она уходит в доход казино

Существует много других систем игры в рулетку, для которых можно составить свои таблицы вероятностей. Но это тот случай, когда нам не нужны никакие законы распределения и таблицы, ибо доподлинно установлено, что математическое ожидание игрока будет точно таким же. От системы к системе меняется лишь