Расчет систематической погрешности. Расчет погрешностей при косвенных измерениях

Расчет погрешностей при прямых и косвенных измерениях

Под измерением понимают сравнение измеряемой величины с другой величиной, принятой за единицу измерения . Измерения выполняются опытным путем с помощью специальных технических средств.

Прямыми измерениями называются измерения, результат которых получается непосредственно из опытных данных (например, измерение длины линейкой, времени – секундомером, температуры – термометром). Косвенными измерениями называются измерения, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, значения которых получают в процессе прямых измерений (например, определение скорости по пройденному пути и времени http://pandia.ru/text/78/464/images/image002_23.png" width="65" height="21 src=">).

Всякое измерение, как бы оно тщательно не было выполнено, обязательно сопровождается погрешностью (ошибкой) – отклонением результата измерений от истинного значения измеряемой величины.

Систематические погрешности – это погрешности, величина которых одинакова во всех измерениях, проводящихся одним и тем же методом с помощью одних и тех же измерительных приборов, в одних и тех же условиях. Систематические погрешности происходят:

В результате несовершенства приборов, используемых при измерениях (например, стрелка амперметра может быть отклонена от нулевого деления в отсутствие тока; у коромысла весов могут быть неравные плечи и др.);

В результате недостаточно полной разработки теории метода измерений, т. е. метод измерений содержит в себе источник ошибок (например, возникает ошибка, когда в калориметрических работах не учитывается потеря тепла в окружающую среду или когда взвешивание на аналитических весах производится без учета выталкивающей силы воздуха);

В результате того, что не учитывается изменение условий опыта (например, при долговременном прохождении тока по цепи в результате теплового действия тока меняются электрические параметры цепи).

Систематические погрешности можно исключить, если изучить особенности приборов, полнее разработать теорию опыта и на основе этого вносить поправки в результаты измерений.

Случайные погрешности – это погрешности, величина которых различна даже для измерений, выполненных одинаковым образом. Причины их кроются как в несовершенстве наших органов чувств, так и во многих других обстоятельствах, сопровождающих измерения, и которые нельзя учесть заранее (случайные ошибки возникают, например, если равенство освещенностей полей фотометра устанавливается на глаз; если момент максимального отклонения математического маятника определяется на глаз; при нахождении момента звукового резонанса на слух; при взвешивании на аналитических весах, если колебания пола и стен передаются весам и т. д.).

Случайных погрешностей избежать нельзя. Их возникновение проявляется в том, что при повторении измерений одной и той же величины с одинаковой тщательностью получаются числовые результаты, отличающиеся друг от друга. Поэтому, если при повторении измерений получались одинаковые значения, то это указывает не на отсутствие случайных погрешностей, а на недостаточную чувствительность метода измерений.

Случайные погрешности изменяют результат как в одну, так и в другую сторону от истинного значения, поэтому, чтобы уменьшить влияние случайных ошибок на результат измерений, обычно многократно повторяют измерения и берут среднее арифметическое всех результатов измерений.

Заведомо неверные результаты - промахи возникают вследствие нарушения основных условий измерения, в результате невнимательности или небрежности экспериментатора. Например, при плохом освещении вместо “3” записывают “8”; из-за того, что экспериментатора отвлекают, он может сбиться при подсчете количества колебаний маятника; из-за небрежности или невнимательности он может перепутать массы грузов при определении жесткости пружины и т. д. Внешним признаком промаха является резкое отличие результата по величине от результатов остальных измерений. При обнаружении промаха результат измерения следует сразу отбросить, а само измерение повторить. Выявлению промахов способствует также сравнение результатов измерений, полученных разными экспериментаторами.

Измерить физическую величину это значит найти доверительный интервал , в котором лежит ее истинное значение http://pandia.ru/text/78/464/images/image005_14.png" width="16 height=21" height="21">..png" width="21" height="17 src=">.png" width="31" height="21 src="> случаев истинное значение измеряемой величины попадет в доверительный интервал. Величина выражается или в долях единицы, или в процентах. При большинстве измерений ограничиваются доверительной вероятностью 0,9 или 0,95. Иногда, когда требуется чрезвычайно высокая степень надежности, задают доверительную вероятность 0,999. Наряду с доверительной вероятностью часто пользуются уровнем значимости , который задает вероятность того, истинное значение не попадает в доверительный интервал. Результат измерения представляют в виде

где http://pandia.ru/text/78/464/images/image012_8.png" width="23" height="19"> – абсолютная погрешность. Таким образом, границы интервала , http://pandia.ru/text/78/464/images/image005_14.png" width="16" height="21"> лежит в пределах этого интервала.

В большинстве случаев конечной целью лабораторной работы является вычисление искомой величины с помощью некоторой формулы, в которую входят величины, измеряемые прямым путем. Такие измерения называются косвенными. В качестве примера приведем формулу плотности твердого тела цилиндрической формы

где r – плотность тела, m – масса тела, d – диаметр цилиндра, h – его высота.

Зависимость (П.5) в общем виде можно представить следующим образом:

где Y – косвенно измеряемая величина, в формуле (П.5) это плотность r; X 1 , X 2 ,... , X n – прямо измеряемые величины, в формуле (П.5) это m , d , и h .

Результат косвенного измерения не может быть точным, поскольку результаты прямых измерений величин X 1 , X 2 , ... , X n всегда содержат в себе погрешность. Поэтому при косвенных измерениях, как и при прямых, необходимо оценить доверительный интервал (абсолютную погрешность)полученного значения DY и относительную погрешность e.

При расчете погрешностей в случае косвенных измерений удобно придерживаться такой последовательности действий:

1) получить средние значения каждой прямо измеряемой величины áX 1 ñ, áX 2 ñ, …, áX n ñ;

2) получить среднее значение косвенно измеряемой величины áY ñ, подставив вформулу (П.6) средние значения прямо измеряемых величин;

3) провести оценки абсолютных погрешностей прямо измеряемых величин DX 1 , DX 2 , ..., DX n , воспользовавшись формулами (П.2) и (П.3);

4) основываясь на явном виде функции (П.6), получить формулу для расчета абсолютной погрешности косвенно измеряемой величины DY и рассчитать ее;

6) записать результат измерения с учетом погрешности.

Ниже без вывода приводится формула, позволяющая получить формулы для расчета абсолютной погрешности, если известен явный вид функции (П.6):

где ¶Y¤¶X 1 и т. д. – частные производные от Y по всем прямо измеряемым величинам X 1 , X 2 , …, X n (когда берется частная производная, например по X 1 , то все остальные величины X i в формуле считаются постоянными), DX i – абсолютные погрешности прямо измеряемых величин, вычисленные согласно (П.3).

Рассчитав DY, находят относительную погрешность .

Однако если функция (П.6) является одночленом, то намного легче сначала рассчитать относительную погрешность, а затем уже абсолютную.

Действительно, разделив обе части равенства (П.7) на Y , получим

.

Но так как , то можно записать

Теперь, зная относительную погрешность, определяют абсолютную .

В качестве примера получим формулу для расчета погрешности плотности вещества, определяемой по формуле (П.5). Поскольку (П.5) является одночленом, то, как сказано выше, проще сначала рассчитать относительную погрешность измерения по (П.8). В (П.8) под корнем имеем сумму квадратов частных производных от логарифма измеряемой величины, поэтому сначала найдем натуральный логарифм r:

ln r = ln 4 + ln m – ln p –2 ln d – ln h ,

а потом уже воспользуемся формулой (П.8) и получим, что

. (П.9)

Как видно, в (П.9) используются средние значения прямо измеряемых величин и их абсолютные погрешности, рассчитанные методом прямых измерений по (П.3). Погрешность, вносимую числом p, не учитывают, поскольку ее значение всегда можно взять с точностью, превышающей точность измерения всех других величин. Рассчитав e, находим .

Если косвенные измерения являются независимыми (условия каждого последующего эксперимента отличаются от условий предыдущего), то значения величины Y вычисляются для каждого отдельного эксперимента. Произведя n опытов, получают n значений Y i . Далее, принимая каждое из значений Y i (где i – номер опыта) за результат прямого измерения, вычисляют áY ñ и DY по формулам (П.1) и (П.2) соответственно.

Окончательный результат как прямых, так и косвенных измерений должен выглядеть так:

, (П.10)

где m – показатель степени, u – единицы измерения величины Y .

Расчёт погрешностей при измерениях физических величин

При прямых измерениях физических величин (значение величины определяется непосредственно измерительным прибором) могут быть допущены три вида погрешностей (ошибок измерений): а) систематические (методические и приборные);

б) случайные;

в) грубые (промахи).

Грубые ошибки (или промахи) нужно сразу же исключить и провести новые измерения.

Систематические и случайные ошибки нужно учитывать .

Стандартная погрешность измерения величины Х рассчитывается по формуле:

Х = , (1)

где Х сист - стандартная систематическая погрешность, а Х сл - стандартная случайная погрешность.

Методические систематические погрешности нужно по возможности устранить или учесть путём введения специальных поправочных коэффициентов к измеряемой величине Х.

Приборные систематические погрешности определяются по классу точности прибора. Существуют семь классов точности приборов - 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0.

Есликласс точности на шкале прибора заключён в кружок (прибор нормирован по относительной погрешности), например, 0,5 , то

Х сист = Х приб = 0,01 . К . Х , (2а)

где К - класс точности прибора, Х - измеренное значение физической величины.

Если класс точности на шкале прибора не заключён в кружок (прибор нормирован по приведенной погрешности), то Х сист = Х приб = 0,01 . К . Х max , (2b)

где Х max -верхний предел измерений прибора.

Если класс точности прибора не известен , то погрешность принимают равной половине цены наименьшего деления шкалы стрелочного прибора, и одного наименьшего деления шкалы цифрового прибора. Если стрелка прибора перемещается вдоль шкалы скачками , как например, у ручного секундомера, то приборную погрешность принимают равной цене деления, соответствующего одному скачку стрелки .

Для определения случайной погрешности измерения проводят многократно.

За наиболее достоверное значение непосредственно измеряемой физической величины Х принимают среднее из всех n измерений:

< X >=

. (3)

Стандартная случайная погрешность равна:

Х сл = t n

, (4)

где Х i = |< X > - X i | - абсолютная погрешность i -го измерения; t n - коэффициент Стьюдента , зависящий от числа измерений n и от требуемой надёжности получаемого результата, определяемый по специальной таблице (cм. ниже). При числе измерений n 5 с надёжностью =2/3 коэффициент Стьюдента t n = 1 .

Относительной погрешностью измерения величины Х называется величина:

Х = . (5)

Х с надёжностью находится в интервале [ Х - Х, Х + Х] , где Х определяется формулой (3), а Х - формулой (1) с подстановкой значений Х сист и Х сл , рассчитанных по формулам (2) и (4). Условно это записывают в виде:

X = < X > ΔX . (6)

При косвенных измерениях значение физической величины определяется путём прямых измерений других физических величин , а также использования известных параметров измерительной установки и справочных данных с дальнейшей подстановкой этих значений в рабочую формулу и соответствующих расчётов.

Например, Y = f (a,b,c,d) , где a = a a, b = b b, c = c c, d = d d.

Наиболее близким к истинному значению будет:

Y = f (a ,b ,c ,d ), (7)

а стандартная погрешность Y принимается равной:

Y = . (8)

В простых случаях, когда, например, Y = a b c , удобно расчёт вести по формуле:


. (9)

Истинное значение измеряемой величины Y находится в интервале [ Y - Y , Y + Y ] , где Y определяется формулой (7), а Y - формулой (8) или (9). Таким образом, результат может быть представлен в стандартной форме (6):

Y = < Y > Y .

При записи результата измерений в стандартной форме необходимо соблюдать

правила округления :

1-ое правило - погрешности Х или Y округляются до двух значащих цифр , если первая цифра единица, и до одной значащей цифры во всех остальных случаях;

2-ое правило - средние значения измеряемых величин Х или < Y > округляются до последнего десятичного разряда , который используется при записи погрешности .

Коэффициенты Стьюдента t n

МУ составлены доц. Петренко Л.Г.