Что такое целлюлоза? Растительная клетчатка-полисахарид. Большая энциклопедия нефти и газа

Целлюлоза — это производные двух природных веществ: дерева и хлопка. В растениях она осуществляет важную функцию, придает им гибкость и прочность.

Где встречается вещество?

Целлюлоза — это вещество натуральное. Растения способны вырабатывать её самостоятельно. В составе присутствуют: водород, кислород, углерод.

Растения вырабатывают сахар под действием солнечных лучей, он перерабатывается клетками и даёт возможность волокнам выдерживать высокие нагрузки от ветра. Целлюлоза — это вещество-участник процесса фотосинтеза. Если сахарную воду брызнуть на срез свежего дерева, то жидкость быстро впитается.

Начинается выработка целлюлозы. Этот естественный способ её получения взят за основу для производства хлопчатобумажной ткани в промышленных масштабах. Существует несколько методов, благодаря которым получают целлюлозу различного качества.

Метод изготовления №1

Получение целлюлозы происходит естественным методом — из семян хлопчатника. Волоски собираются автоматизированными механизмами, но требуется длительный период выращивания растения. Ткань, произведённая таким образом, считается наиболее чистой.

Более быстро целлюлозу можно получить из волокон дерева. Однако при этом методе качество намного хуже. Этот материал пригоден только для изготовления неволокнистого пластика, целлофана. Также из такого материала могут производить искусственные волокна.

Естественное получение

Производить целлюлозу из семян хлопка начинают с отделения длинных волокон. Этот материал идёт на изготовление хлопчатобумажной ткани. Мелкие части, менее 1,5 см, называют

Они пригодны для получения целлюлозы. Собранные части подвергают нагреву под высоким давлением. Длительность процесса может достигать 6 часов. Перед тем как начать греть материал, к нему добавляют гидроксид натрия.

Полученное вещество требуется промыть. Для этого применяется хлор, который к тому же и отбеливает. Состав целлюлозы при таком методе наиболее чистый (99%).

Метод изготовления №2 из древесины

Для получения 80-97% целлюлозы используют щепу хвойных деревьев, химические вещества. Всю массу смешивают и подвергают обработке температурой. В результате варки выделяется требуемое вещество.

Смешивается бисульфит кальция, диоксид серы и древесная масса. Целлюлозы в полученной смеси не более 50%. В результате реакции в жидкости растворяются углеводороды, лигнины. Твёрдый материал проходит стадию очистки.

Получают массу, напоминающую некачественную бумагу. Этот материал служит основой изготовления веществ:

  • Эфиров.
  • Целлофана.
  • Вискозного волокна.

Что производят из ценного материала?

Волокнистое, что позволяет из неё изготавливать одежду. Хлопковый материл — это на 99,8% натуральный продукт, полученный естественным методом, приведенным выше. Из него же можно изготовить взрывчатку в результате химической реакции. Целлюлоза активна при нанесении на неё кислот.

Свойства целлюлозы применимы для производства тканей. Так, из неё изготавливают искусственные волокна, напоминающие внешне и на ощупь натуральные ткани:

  • вискозное и ;
  • искусственный мех;
  • медно-аммиачный шёлк.

Преимущественно из древесной целлюлозы изготавливают:

  • лаки;
  • фотопленку;
  • бумажные изделия;
  • пластмассы;
  • губки для мытья посуды;
  • бездымный порох.

В результате химической реакции из целлюлозы получают:

  • тринитроцеллюлозу;
  • динитроклетчатку;
  • глюкозу;
  • жидкое топливо.

В пищу целлюлоза также может применяться. В составе некоторых растений (сельдерея, салата, отрубей) присутствуют её волокна. Также она служит материалом для производства крахмала. Уже научились делать из неё тонкие нити — искусственная паутина очень прочная и не растягивается.

Химическая формула целлюлозы — C6H10O5. Является полисахаридом. Из неё изготавливают:

  • медицинскую вату;
  • бинты;
  • тампоны;
  • картон, ДСП;
  • пищевую добавку Е460.

Достоинства вещества

Целлюлоза способна выдерживать высокие температуры до 200 градусов. Молекулы не разрушаются, это позволяет изготавливать из неё пластиковую посуду многоразового использования. При этом сохраняется важное качество — эластичность.

Целлюлоза выдерживает длительное воздействие кислот. Абсолютно не растворяется в воде. Не переваривается человеческим организмом, используется в качестве сорбента.

Микрокристаллическая целлюлоза используется в нетрадиционной медицине в качестве препарата для очистки пищеварительной системы. Порошкообразное вещество выступает в роли пищевой добавки для снижения калорийности употребляемых блюд. Это способствует выводу токсинов, снижению сахара и холестерина в крови.

Метод изготовления №3 — промышленный

На производственных площадках целлюлозу готовят путём варки в различных средах. От вида реагента зависит используемый материал — тип дерева:

  • Смолистые породы.
  • Лиственные деревья.
  • Растения.

Различают несколько видов реагентов для варки:

  • Иначе метод именуется как сульфитный. В качестве раствора применяют соль сернистой кислоты либо её жидкую смесь. При этом варианте производства целлюлозу выделяют из пород хвойных. Хорошо перерабатывают пихты, ели.
  • Щелочная среда или натронный метод основан на использовании гидроксида натрия. Раствор хорошо отделяет целлюлозу из волокон растений (кукурузных стеблей) и деревьев (преимущественно лиственных).
  • Одновременное использование гидроксида и сульфида натрия применяется в сульфатном методе. Он широко внедрен в производства по выработке сульфида белого щелока. Технология является достаточно негативной для окружающей природы из-за образующихся сторонних химических реакций.

Последний метод наиболее распространен из-за его универсальности: практически из любого дерева можно получить целлюлозу. Однако чистота материала не совсем высокая после одной варки. От примесей избавляются дополнительными реакциями:

  • гемицеллюлозы удаляют щелочными растворами;
  • макромолекулы лигнина и продукты их разрушения убираются хлором с последующей обработкой щелочью.

Пищевая ценность

Крахмал и целлюлоза имеют схожую структуру. В результате экспериментов удалось получить из несъедобных волокон продукт. Он требуется человеку постоянно. Употребляемая пища состоит более чем из 20% крахмала.

Учёным удалось получить из целлюлозы вещество амилозу, положительно влияющую на состояние организма человека. Одновременно с этим в процессе реакции выделяется глюкоза. Получается безотходное производство — последнее вещество направляется для изготовления этанола. Амилоза же служит как средство профилактики ожирения.

В результате реакции целлюлоза остаётся в твердом состоянии, оседая на дно сосуда. Остальные составляющие удаляются при помощи магнитных наночастиц либо растворяются и отводятся с жидкостью.

Типы вещества в продаже

Поставщики предлагают целлюлозу разного качества по приемлемым ценам. Перечислим основные типы материала:

  • Целлюлоза сульфатная белого цвета, произведенная из двух видов дерева: хвойных и лиственных пород. Имеется небеленый материал, используемый в упаковочном материале, бумаге низкого качества для изоляционных материалов и других целей.
  • Имеется в продаже сульфитная также белого цвета, изготовленная из хвойных деревьев.
  • Порошковый материал белого цвета подходит для производства веществ медицинского назначения.
  • Целлюлоза премиум-сортов изготавливается методом отбеливания без участия хлора. В качестве сырья берутся хвойные породы. Древесная масса состоит из сочетания щепы ели и сосны в соотношении 20/80%. Чистота получаемого материала наивысшая. Он подходит для изготовления стерильных материалов, применяемых в медицине.

Для выбора подходящей целлюлозы используют стандартные критерии: чистота материала, прочность на разрыв, длина волокон, индекс сопротивления раздиранию. Также количественно указывается химическое состояние или агрессивность среды водной вытяжки и влажность. Для целлюлозы, поставляемой в виде беленой массы, применимы другие показатели: удельный объем, яркость, величина помола, прочность на растяжение, степень чистоты.

Немаловажным для массы целлюлозы является показатель — индекс сопротивления раздиранию. От него зависит назначение производимых материалов. Учитывают используемой в качестве сырья, и влажность. Также важен уровень смол и жиров. Однородность порошка важна для определенных технологических процессов. Для аналогичных целей оценивают вязкость и сопротивление продавливанию материала в виде листов.

ЦЕЛЛЮЛОЗА
клетчатка, главный строительный материал растительного мира, образующий клеточные стенки деревьев и других высших растений. Самая чистая природная форма целлюлозы - волоски семян хлопчатника.
Очистка и выделение. В настоящее время промышленное значение имеют лишь два источника целлюлозы - хлопок и древесная масса. Хлопок представляет собой почти чистую целлюлозу и не требует сложной обработки, чтобы стать исходным материалом для изготовления искусственного волокна и неволокнистых пластиков. После того как от хлопкового семени отделены длинные волокна, используемые для изготовления хлопчатобумажных тканей, остаются короткие волоски, или "линт" (хлопковый пух), длиной 10-15 мм. Линт отделяют от семени, в течение 2-6 ч нагревают под давлением с 2,5-3%-м раствором гидроксида натрия, затем промывают, отбеливают хлором, снова промывают и сушат. Полученный продукт представляет собой целлюлозу чистоты 99%. Выход равен 80% (масс.) линта, а остальное приходится на лигнин, жиры, воски, пектаты и шелуху семян. Древесную массу делают обычно из древесины деревьев хвойных пород. Она содержит 50-60% целлюлозы, 25-35% лигнина и 10-15% гемицеллюлоз и нецеллюлозных углеводородов. В сульфитном процессе древесную щепу варят под давлением (около 0,5 МПа) при 140° C с диоксидом серы и бисульфитом кальция. При этом лигнины и углеводороды переходят в раствор и остается целлюлоза. После промывки и отбеливания очищенная масса отливается в рыхлую бумагу, похожую на промокательную, и сушится. Такая масса на 88-97% состоит из целлюлозы и вполне пригодна для химической переработки в вискозное волокно и целлофан, а также в производные целлюлозы - сложные и простые эфиры. Процесс регенерации целлюлозы из раствора при добавлении кислоты в ее концентрированный медноаммиачный (т.е. содержащий сульфат меди и гидроксид аммония) водный раствор был описан англичанином Дж.Мерсером около 1844. Но первое промышленное применение этого метода, положившее начало промышленности медно-аммиачного волокна, приписывается Е. Швейцеру (1857), а дальнейшее его развитие - заслуга М. Крамера и И. Шлоссбергера (1858). И только в 1892 Кросс, Бевин и Бидл в Англии изобрели процесс получения вискозного волокна: вязкий (откуда название вискоза) водный раствор целлюлозы получался после обработки целлюлозы сначала крепким раствором едкого натра, что давало "натронную целлюлозу", а затем - дисульфидом углерода (CS2), в результате чего получался растворимый ксантогенат целлюлозы. При выдавливании струйки этого "прядильного" раствора через фильеру с малым круглым отверстием в кислотную ванну целлюлоза регенерировалась в форме вискозного волокна. При выдавливании раствора в такую же ванну через фильеру с узкой щелью получалась пленка, названная целлофаном. Ж. Бранденбергер, занимавшийся во Франции этой технологией с 1908 по 1912, первым запатентовал непрерывный процесс изготовления целлофана.
Химическая структура. Несмотря на широкое промышленное применение целлюлозы и ее производных, принятая в настоящее время химическая структурная формула целлюлозы была предложена (У.Хоуорсом) лишь в 1934. Правда, с 1913 была известна ее эмпирическая формула C6H10O5, определенная по данным количественного анализа хорошо промытых и высушенных образцов: 44,4% C, 6,2% H и 49,4% O. Благодаря работам Г.Штаудингера и К.Фройденберга было известно также, что это длинноцепная полимерная молекула, состоящая из показанных на рис. 1 повторяющихся глюкозидных остатков. Каждое звено имеет три гидроксильные группы - одну первичную (- CH2ЧOH) и две вторичные (>CHЧOH). К 1920 Э.Фишер установил структуру простых сахаров, и в том же самом году рентгенографические исследования целлюлозы впервые показали четкую дифракционную картину ее волокон. Рентгенограмма волокна хлопка указывает на четко выраженную кристаллическую ориентацию, но волокно льна еще более упорядочено. При регенерации целлюлозы в форме волокна кристалличность в значительной мере теряется. Как нетрудно видеть в свете достижений современной науки, структурная химия целлюлозы практически стояла на месте с 1860 по 1920 по той причине, что все это время оставались в зачаточном состоянии вспомогательные научные дисциплины, необходимые для решения проблемы.

РЕГЕНЕРИРОВАННАЯ ЦЕЛЛЮЛОЗА
Вискозное волокно и целлофан. И вискозное волокно, и целлофан - это регенерированная (из раствора) целлюлоза. Очищенная природная целлюлоза обрабатывается избытком концентрированного гидроксида натрия; после удаления избытка ее комки растирают и полученную массу выдерживают в тщательно контролируемых условиях. При таком "старении" уменьшается длина полимерных цепей, что способствует последующему растворению. Затем измельченную целлюлозу смешивают с дисульфидом углерода и образовавшийся ксантогенат растворяют в растворе едкого натра для получения "вискозы" - вязкого раствора. Когда вискоза попадает в водный раствор кислоты, из нее регенерируется целлюлоза. Упрощенные суммарные реакции таковы:


Вискозное волокно, получаемое выдавливанием вискозы через малые отверстия фильеры в раствор кислоты, широко применяется для изготовления одежды, драпировочных и обивочных тканей, а также в технике. Значительные количества вискозного волокна идут на технические ремни, ленты, фильтры и шинный корд.
Целлофан. Целлофан, получаемый выдавливанием вискозы в кислую ванну через фильеру с узкой щелью, проходит затем через ванны промывки, отбеливания и пластификации, пропускается через сушильные барабаны и сматывается в рулон. Поверхность целлофановой пленки почти всегда покрывают нитроцеллюлозой, смолой, каким-либо воском или лаком, чтобы уменьшить пропускание паров воды и обеспечить возможность термической герметизации, так как целлофан без покрытия не обладает свойством термопластичности. На современных производствах для этого используются полимерные покрытия поливинилиденхлоридного типа, поскольку они в меньшей степени влагопроницаемы и дают более прочное соединение при термогерметизации. Целлофан широко применяется главным образом в тароупаковочном производстве как оберточный материал для галантерейных товаров, пищевых продуктов, табачных изделий, а также в качестве основы для самоклеющейся упаковочной ленты.
Вискозная губка. Наряду с получением волокна или пленки, вискозу можно смешать с подходящими волокнистыми и мелкокристаллическими материалами; после кислотной обработки и водного выщелачивания такая смесь преобразуется в вискозный губчатый материал (рис. 2), который применяется для упаковки и теплоизоляции.



Медноаммиачное волокно. Волокно из регенерированной целлюлозы производится в промышленных масштабах также путем растворения целлюлозы в концентрированном медноаммиачном растворе (CuSO4 в NH4OH) и формования из полученного раствора волокна в кислотной осадительной ванне. Такое волокно называется медноаммиачным.
СВОЙСТВА ЦЕЛЛЮЛОЗЫ
Химические свойства. Как показано на рис. 1, целлюлоза представляет собой высокополимерный углевод, состоящий из глюкозидных остатков C6H10O5, соединенных эфирными мостиками в положении 1,4. Три гидроксильные группы в каждом глюкопиранозном звене могут быть этерифицированы такими органическими агентами, как смесь кислот и ангидридов кислот с соответствующим катализатором, например серной кислотой. Простые эфиры могут образовываться в результате действия концентрированного гидроксида натрия, приводящего к образованию натронной целлюлозы, и последующей реакции с алкилгалогенидом:


Реакция с оксидом этилена или пропилена дает гидроксилированные простые эфиры:


Наличием этих гидроксильных групп и геометрией макромолекулы обусловлено сильное полярное взаимное притяжение соседних звеньев. Силы притяжения столь велики, что обычные растворители не в состоянии разорвать цепь и растворить целлюлозу. Эти свободные гидроксильные группы ответственны также за большую гигроскопичность целлюлозы (рис. 3). Этерификация и эфиризация понижают гигроскопичность и повышают растворимость в обычных растворителях.



Под действием водного раствора кислоты разрываются кислородные мостики в положении 1,4-. Полный разрыв цепи дает глюкозу - моносахарид. Первоначальная длина цепи зависит от происхождения целлюлозы. Она максимальна в природном состоянии и уменьшается в процессе выделения, очистки и преобразования в производные соединения (см. таблицу).

СТЕПЕНЬ ПОЛИМЕРИЗАЦИИ ЦЕЛЛЮЛОЗЫ
Материал Число глюкозидных остатков
Необработанный хлопок 2500-3000
Очищенный хлопковый линт 900-1000
Очищенная древесная масса 800-1000
Регенерированная целлюлоза 200-400
Промышленный ацетат целлюлозы 150-270


Даже механический сдвиг, например при абразивном размельчении, приводит к уменьшению длины цепей. При уменьшении длины полимерной цепи ниже определенного минимального значения изменяются макроскопические физические свойства целлюлозы. Окислительные агенты оказывают на целлюлозу воздействие, не вызывая расщепления глюкопиранозного кольца (рис. 4). Последующее действие (в присутствии влаги, например, при климатических испытаниях), как правило, приводит к разрыву цепи и увеличению числа альдегидоподобных концевых групп. Поскольку альдегидные группы легко окисляются до карбоксильных, содержание карбоксила, практически отсутствующего в природной целлюлозе, резко возрастает в условиях атмосферных воздействий и окисления.



Как и все полимеры, целлюлоза разрушается под воздействием атмосферных факторов в результате совместного действия кислорода, влаги, кислотных компонентов воздуха и солнечного света. Важное значение имеет ультрафиолетовая составляющая солнечного света, и многие хорошо защищающие от УФ-излучения агенты увеличивают срок службы изделий из производных целлюлозы. Кислотные компоненты воздуха, такие, как оксиды азота и серы (а они всегда присутствуют в атмосферном воздухе промышленных районов), ускоряют разложение, зачастую оказывая более сильное воздействие, чем солнечный свет. Так, в Англии было отмечено, что образцы хлопка, испытывавшиеся на воздействие атмосферных условий, зимой, когда практически не было яркого солнечного света, деградировали быстрее, чем летом. Дело в том, что сжигание зимой больших количеств угля и газа приводило к повышению в воздухе концентрации оксидов азота и серы. Кислотные поглотители, антиоксиданты и агенты, поглощающие УФ-излучение, снижают чувствительность целлюлозы к атмосферным воздействиям. Замещение свободных гидроксильных групп приводит к изменению такой чувствительности: нитрат целлюлозы деградирует быстрее, а ацетат и пропионат - медленнее.
Физические свойства. Полимерные цепи целлюлозы упакованы в длинные пучки, или волокна, в которых наряду с упорядоченными, кристаллическими имеются и менее упорядоченные, аморфные участки (рис. 5). Измеренный процент кристалличности зависит от типа целлюлозы, а также от способа измерения. По рентгеновским данным, он составляет от 70% (хлопок) до 38-40% (вискозное волокно). Рентгенографический структурный анализ дает информацию не только о количественном соотношении между кристаллическим и аморфным материалом в полимере, но и о степени ориентации волокна, вызываемой растяжением или нормальными процессами роста. Резкость дифракционных колец характеризует степень кристалличности, а дифракционные пятна и их резкость - наличие и степень предпочтительной ориентации кристаллитов. В образце вторичного ацетата целлюлозы, полученного процессом "сухого" формования, и степень кристалличности, и ориентация весьма незначительны. В образце триацетата степень кристалличности больше, но предпочтительная ориентация отсутствует. Термообработка триацетата при температуре 180-240° C заметно повышает степень его кристалличности, а ориентирование (вытягиванием) в сочетании с термообработкой дает самый упорядоченный материал. Лен обнаруживает высокую степень и кристалличности, и ориентации.
См. также
ХИМИЯ ОРГАНИЧЕСКАЯ ;
БУМАГА И ПРОЧИЕ ПИСЧИЕ МАТЕРИАЛЫ ;
ПЛАСТМАССЫ .


Рис. 5. МОЛЕКУЛЯРНАЯ СТРУКТУРА целлюлозы. Молекулярные цепи проходят через несколько мицелл (кристаллических областей) протяженностью L. Здесь A, A" и B" - концы цепей, лежащие в кристаллизованной области; B - конец цепи вне кристаллизованной области.


ЛИТЕРАТУРА
Бушмелев В.А., Вольман Н.С. Процессы и аппараты целлюлозно-бумажного производства. М., 1974 Целлюлоза и ее производные. М., 1974 Аким Э.Л. и др. Технология обработки и переработки целлюлозы, бумаги и картона. Л., 1977

Энциклопедия Кольера. - Открытое общество . 2000 .

Целлюлоза - это полисахарид, построенный из элементарных звеньев ангидро- D -глюкозы и представляющий собой поли-1, 4- β - D -глюкопиранозил- D -глюкопиранозу. Макромолекула целлюлозы наряду с ангидроглюкозными звеньями может содержать остатки других моносахаридов (гексоз и пентоз), а также уроновых кислот (см. рис.). Характер и количество таких остатков определяются условиями биохимического синтеза.

Целлюлоза - главная составная часть клеточных стенок высших растений. Вместе с сопровождающими её веществами она играет роль каркаса, несущего основную механическую нагрузку. Целлюлоза содержится в основном в волосках семян некоторых растений, например, хлопчатника (97-98% целлюлозы), древесины (40-50% в расчёте на сухое вещество), лубяных волокон, внутренних слоёв коры растений (лён и рами - 80-90%, джут - 75% и другие), стеблях однолетних растений (30-40%), например, камыша, кукурузы, злаковых растений, подсолнечника.

Выделение целлюлозы из природных материалов основано на действии реагентов, разрушающих или растворяющих нецеллюлозные компоненты. Характер обработки зависит от состава и структуры растительного материала. Для хлопкового волокна (нецеллюлозные примеси - 2, 0-2, 5% азотсодержащих веществ; около 1% пентозанов и пектиновых веществ; 0, 3-1, 0% жиров и восков; 0, 1-0, 2% минеральных солей) используют сравнительно мягкие методы выделения.

Хлопковый пух подвергают парке (3-6 часов, 3-10 атмосфер) с 1, 5-3% раствором едкого натрия с последующей промывкой и отбелкой различными окислителями - двуокисью хлора, гипохлоритом натрия, перекисью водорода. В раствор переходят некоторые полисахариды с низким молярным весом (пентозаны, частично гексозаны), уроновые кислоты, часть жиров и восков. Содержание α -целлюлозы (фракция, нерастворимая в 17, 5% растворе N аОН при 20° в течении 1 часа) может быть доведено до 99, 8-99, 9%. В результате частичного разрушения морфологической структуры волокна при варке повышается реакционная способность целлюлозы (характеристика, определяющая растворимость эфиров, получаемых при последующей химической переработке целлюлозы, и фильтруемость прядильных растворов этих эфиров).

Для выделения целлюлозы из древесины, содержащей 40-55% целлюлозы, 5-10% других гексозанов, 10-20% пентозанов, 20-30% лигнина, 2-5% смол и ряд других примесей и имеющей сложную морфологическую структуру, применяют более жёсткие условия обработки; чаще всего используют сульфитную или сульфатную варку древесной щепы.

При сульфитной варке древесину обрабатывают раствором, содержащим 3-6% свободного SO 2 и около 2% SO 2 , связанного в виде бисульфита кальция, магния, натрия или аммония. Варка проводится под давлением при 135-150° в течение 4-12 часов; варочные растворы при кислой бисульфитной варке имеют рН от 1, 5 до 2, 5. При сульфитной варке происходит сульфирование лигнина с последующим переходом его в раствор. Одновременно часть гемицеллюлоз гидролизуется, образующиеся олиго- и моносахариды, а также часть смолистых веществ растворяются в варочном щёлоке. При применении выделяемой по этому методу целлюлозы (сульфитной целлюлозы) для химической переработки (главным образом в производстве вискозного волокна) целлюлозу подвергают облагораживанию, основной задачей которого является повышение химической чистоты и однородности целлюлозы (удаление лигнина, гемицеллюлозы, снижение зольности и смолистости, изменение коллоидно-химических и физических свойств). Наиболее распространённые методы облагораживания - обработка отбеленной целлюлозы 4-10% раствором N аОН при 20° (холодное облагораживание) или 1% раствором NaOH при 95-100° (горячее облагораживание). Облагороженная сульфитная целлюлоза для химической переработки имеет следующие показатели: 95-98% α -целлюлозы; 0, 15--0, 25% лигнина; 1, 8-4, 0% пентозанов; 0, 07-0, 14% смолы; 0, 06-0, 13% золы. Сульфитную целлюлозу применяют также для изготовления высококачественной бумаги и картона.

Древесную щепу можно также подвергать варке с 4- 6% раствором N аОН (натронная варка) или его смесью с сернистым натрием (сульфатная варка) при 170-175° под давлением течение 5-6 часов. При этом происходит растворение лигнина, переход в раствор и гидролиз части гемицеллюлоз (главным образом гексозанов) и дальнейшие превращения образующихся сахаров в органические оксикислоты (молочную, сахариновую и другие) и кислоты (муравьиную). Смоляные и высшие жирные кислоты постепенно переходят в варочный щёлок в виде натриевых солей (так называемое « сульфатное мыло »). Щелочная варка применима для переработки как еловой, так и сосновой и лиственной древесины. При применении выделяемой по этому методу целлюлозы (сульфатной целлюлозы) для химической переработки древесину перед варкой подвергают предгидролизу (обработке разбавленной серной кислотой при повышенной температуре). Предгидролизная сульфатная целлюлоза, используемая для химической переработки, после облагораживания и отбелки имеет следующий средний состав (%): α -целлюлоза - 94, 5-96, 9; пентозаны 2-2, 5; смолы и жиры - 0, 01-0, 06; зола - 0, 02-0, 06. Сульфатную целлюлозу применяют также для выработки мешочных и обёрточных бумаг, бумажных верёвок, технических бумаг (шпульные, наждачные, конденсаторные), писчих, типографских и белёных прочных бумаг (чертёжные, картографические, для документов).

Сульфатная варка применяется для получения целлюлозы высокого выхода, используемой для выработки гофрированного картона и мешочной бумаги (выход целлюлозы из древесины составляет в этом случае 50-60% против ~ 35% для предгидролизной сульфатной целлюлозы для химической переработки). Целлюлоза высокого выхода содержит значительные количества лигнина (12-18%) и сохраняет форму щепы. Поэтому после варки её подвергают механическому размолу. Натронная и сульфатная варка может быть использована и при выделении целлюлозы из соломы, содержащей большие количества SiO 2 , удаляемой при действии щёлочи.

Из лиственной древесины и однолетних растений целлюлозу выделяют также гидротропной варкой - обработкой сырья концентрированными (40-50%) растворами солей щелочных металлов и ароматических карбоновых и сульфокислот (например, бензойной, цимол- и ксилолсульфокислот) при 150-180° в течение 5-10 часов. Другие методы выделения целлюлозы (азотнокислотный, хлорно-щелочной и другие) не получили широкого распространения.

Для определения молярного веса целлюлозы обычно применяют вискозиметрический [по вязкости растворов целлюлозы в медно-аммиачном растворе, в растворах четвертичных аммониевых оснований, гидроокиси кадмийэтилендиамина (так называемый кадоксен), в щелочном растворе железовиннокислого натриевого комплекса и других, или по вязкости эфиров целлюлозы - главным образом ацетатов и нитратов, полученных в условиях, исключающих деструкцию] и осмотический (для эфиров целлюлозы) методы. Степень полимеризации, определённая с помощью этих методов, различна для разных препаратов целлюлозы: 10-12 тысяч для хлопковой целлюлозы и целлюлозы лубяных волокон; 2, 5-3 тысячи для древесной целлюлозы (по данным определения в ультрацентрифуге) и 0, 3-0, 5 тысячи для целлюлозы вискозного шёлка.

Для целлюлозы характерна значительная полидисперсность по молярному весу. Фракционируют целлюлозу фракционным растворением или осаждением из медно-аммиачного раствора, из раствора в куприэтилендиамине, кадмийэтилендиамине или в щелочном растворе железовиннокислого натриевого комплекса, а также фракционным осаждением из растворов нитратов целлюлозы в ацетоне или этилацетате. Для целлюлозы хлопка, лубяных волокон и древесной целлюлозы хвойных пород характерны кривые распределения по молярному весу с двумя максимумами; кривые для древесной целлюлозы лиственных пород имеют один максимум.

Целлюлоза имеет сложную надмолекулярную структуру. На основании данных рентгенографических, электронографических и спектроскопических исследований обычно принимают, что целлюлоза относится к кристаллическим полимерам. Целлюлоза имеет ряд структурных модификаций, основные из которых природная целлюлоза и гидратцеллюлоза. Природная целлюлоза превращается в гидратцеллюлозу при растворении и последующем высаживании из раствора, при действии концентрированных растворов щёлочи и последующем разложении щелочной целлюлозы и другими. Обратный переход может быть осуществлён при нагревании гидратцеллюлозы в растворителе, вызывающем её интенсивное набухание (глицерин, вода). Обе структурные модификации имеют различные рентгенограммы и сильно отличаются по реакционной способности, растворимости (не только самой целлюлозы, но и её эфиров), адсорбционной способности и другими. Препараты гидратцеллюлозы обладают повышенной гигроскопичностью и накрашиваемостыо, а также более высокой скоростью гидролиза.

Наличие между элементарными звеньями в макромолекуле целлюлозы ацетальных (глюкозидных) связей обусловливает малую устойчивость её к действию кислот, в присутствии которых протекает гидролиз целлюлозы (см. рис.). Скорость процесса зависит от ряда факторов, из которых решающим, особенно при проведении реакции в гетерогенной среде, является структура препаратов, определяющая интенсивность межмолекулярного взаимодействия. В начальной стадии гидролиза скорость может быть более высокой, что связано с возможностью существования в макромолекуле небольшого числа связей, менее устойчивых к действию гидролизующих реагентов, чем обычные глюкозидные связи. Продукты частичного гидролиза целлюлозы называются гидроцеллюлозой.

В результате гидролиза значительно изменяются свойства целлюлозного материала - снижается механическая прочность волокон (из-за уменьшения степени полимеризации), увеличивается содержание альдегидных групп и растворимость в щелочах. Частичный гидролиз не изменяет устойчивости препарата целлюлозы к щелочным обработкам. Продуктом полного гидролиза целлюлозы является глюкоза. Промышленные методы гидролиза целлюлозосодержащего растительного сырья заключаются в обработке разбавленными растворами HCl и H 2 SO 4 (0, 2-0, 3%) при 150-180°; выход сахаров при ступенчатом гидролизе - до 50%.

По химической природе целлюлоза представляет собой полиатомный спирт. Благодаря наличию в элементарном звене макромолекулы гидроксильных групп целлюлоза вступает в реакцию с щелочными металлами и основаниями. При обработке высушенной целлюлозы раствором металлического натрия в жидком аммиаке при минус 25-50° в течение 24 часов образуется тринатрийалкоголят целлюлозы:

n + 3nNa → n + 1, 5nH 2.

При действии на целлюлозу концентрированных растворов щелочей наряду с химической реакцией протекают и физико-химические процессы - набухание целлюлозы и частичное растворение её низкомолекулярных фракций, структурные превращения. Взаимодействие гидроокиси щелочного металла с целлюлозой может протекать по двум схемам:

n + n NaOH ↔ n + nH 2 O

[ C 6 H 7 O 2 (OH) 3 ]n + n NaOH ↔ n.

Реакционная способность первичных и вторичных гидроксильных групп целлюлозы в щелочной среде различна. Наиболее ярко выражены кислотные свойства у гидроксильных групп, расположенных у второго углеродного атома элементарного звена целлюлозы, входящих в состав гликолевой группировки и находящихся в α -положении к ацетальной связи. Образование алкоголята целлюлозы, по-видимому, происходит как раз за счёт этих гидроксильных групп, в то время как при взаимодействии с остальными ОН-группами образуется молекулярное соединение.

Состав щелочной целлюлозы зависит от условий её получения - концентрации щелочи; температуры, характера целлюлозного материала и других. Вследствие обратимости реакции образования щелочной целлюлозы повышение концентрации щёлочи в растворе приводит к увеличению γ (количество замещённых гидроксильных групп на 100 элементарных звеньев макромолекулы целлюлозы) щелочной целлюлозы, а снижение температуры мерсеризации - к увеличению γ щелочной целлюлозы, получаемой при действии эквиконцентрированных растворов щёлочи, что объясняется различием в температурных коэффициентах прямой и обратной реакций. Различная интенсивность взаимодействия с щелочами разных целлюлозных материалов связана, по-видимому, с особенностями физической структуры этих материалов.

Важной составной частью процесса взаимодействия целлюлозы с щелочами является набухание целлюлозы и растворение её низкомолекулярных фракций. Эти процессы облегчают удаление из целлюлозы низкомолекулярных фракций (гемицеллюлоз) и диффузию этерифицирующих реагентов внутрь волокна при последующих процессах этерификации (например, при ксантогенировании). При понижении температуры степень набухания значительно увеличивается. Например, при 18° увеличение диаметра хлопкового волокна при действии 12% NaOH составляет 10%, а при -10° достигает 66%. При увеличении концентрации щёлочи происходит сначала увеличение, а затем (свыше 12%) снижение степени набухания. Максимальная степень набухания наблюдается при тех концентрациях щёлочи, при которых происходит появление рентгенограммы щелочной целлюлозы. Эти концентрации различны для разных целлюлозных материалов: для хлопка 18% (при 25°), для рами 14-15%, для сульфитной целлюлозы 9, 5-10%. Взаимодействие целлюлозы с концентрированными растворами N аОН широко используют в текстильной промышленности, при производстве искусственных волокон и простых эфиров целлюлозы.

Взаимодействие целлюлозы с другими гидроокисями щелочных металлов протекает аналогично реакции с едким натром. Рентгенограмма щелочной целлюлозы появляется при действии на препараты природной целлюлозы примерно эквимолярных (3, 5-4, 0 моль/л) растворов гидроокисей щелочных металлов. Сильные органические основания - некоторые гидроокиси тетраалкил (арил) аммония, по-видимому, образуют с целлюлозой молекулярные соединения.

Особое место в ряду реакций целлюлозы с основаниями занимает её взаимодействие с куприаммингидратом [ Cu (NH 3 ) 4 ] (OH ) 2 , а также с рядом других комплексных соединений меди, никеля, кадмия, цинка - куприэтилендиамином [ Cu (en ) 2 ](ОН) 2 (en - молекула этилендиамина), ниоксаном [ Ni(NH 3 ) 6 ] (ОН) 2 , ниоксеном [ Ni (en ) 3 ] (ОН) 2 , кадоксеном [ Cd (en ) 3 ] (OH ) 2 и другими. В этих продуктах целлюлоза растворяется. Осаждение целлюлозы из медно-аммиачного раствора осуществляется при действии воды, растворов щёлочи или кислоты.

При действии окислителей происходит частичное окисление целлюлозы - процесс, успешно используемый в технологии (отбелка целлюлозы и хлопчатобумажных тканей, предсозревание щелочной целлюлозы). Окисление целлюлозы - побочный процесс при облагораживании целлюлозы, приготовлении медно-аммиачного прядильного раствора, эксплуатации изделий из целлюлозных материалов. Продукты частичного окисления целлюлозы носят название оксицеллюлоз. В зависимости от характера окислителя окисление целлюлозы может носить избирательный или неизбирательный характер. К наиболее избирательно действующим окислителям относится йодная кислота и её соли, окисляющие гликолевую группировку элементарного звена целлюлозы с разрывом пиранового цикла (образование диальдегидцеллюлозы) (см. рис.). При действии йодной кислоты и периодатов окисляется также незначительное число первичных гидроксильных групп (до карбоксильных или альдегидных). По аналогичной схеме окисляется целлюлоза при действии тетраацетата свинца в среде органических растворителей (уксусная кислота, хлороформ).

По устойчивости к действию кислот диальдегидцеллюлоза мало отличается от исходной целлюлозы, но значительно менее устойчива к действию щелочей и даже воды, что является результатом гидролиза полуацетальной связи в щелочной среде. Окисление альдегидных групп в карбоксильные действием хлорита натрия (образование дикарбоксилцеллюлозы), а также восстановление их до гидроксильных (образование так называемой « диспирт »- целлюлозы) стабилизируют окисленную целлюлозу к действию щелочных реагентов. Растворимость нитратов и ацетатов диальдегидцеллюлозы даже невысокой степени окисления (γ = 6-10) значительно ниже, чем растворимость соответствующих эфиров целлюлозы, по-видимому, вследствие образования при этерификации межмолекулярных полуацетальных связей. При действии на целлюлозу двуокиси азота окисляются преимущественно первичные гидроксильные группы до карбоксильных (образование монокарбоксилцеллюлозы) (см. рис.). Реакция протекает по радикальному механизму с промежуточным образованием азотистокислых эфиров целлюлозы и последующими окислительными превращениями этих эфиров. До 15% от общего содержания карбоксильных групп являются неуроновыми (образуются СООН-группы у второго и третьего углеродных атомов). Одновременно происходит окисление гидроксильных групп у этих атомов до кетогрупп (до 15-20% от общего количества окисленных гидроксильных групп). Образование кетогрупп является, по-видимому, причиной крайне низкой устойчивости монокарбоксилцеллюлозы к действию щелочей и даже воды при повышенной температуре.

При содержании 10-13% СООН-групп монокарбоксилцеллюлоза растворяется в разбавленном растворе NaOH, растворах аммиака, пиридина с образованием соответствующих солей. Её ацетилирование протекает медленнее, чем целлюлозы; ацетаты не полностью растворяются в метиленхлориде. Нитраты монокарбоксилцеллюлозы не растворяются в ацетоне даже при содержании азота до 13, 5%. Эти особенности свойств сложных эфиров монокарбоксилцеллюлозы связаны с образованием межмолекулярных эфирных связей при взаимодействии карбоксильных и гидроксильных групп. Монокарбоксилцеллюлоза применяется как кровоостанавливающее средство, как катионит для разделения биологически активных веществ (гормоны). Путём комбинированного окисления целлюлозы периодатом, а затем хлоритом и двуокисью азота синтезированы препараты так называемой трикарбоксилцеллюлозы, содержащие до 50, 8% СООН-групп.

Направление окисления целлюлозы при действии на неё неизбирательных окислителей (двуокись хлора, соли хлорноватистой кислоты, перекись водорода, кислород в щелочной среде) в значительной степени зависит от характера среды. В кислой и нейтральной средах при действии гипохлорита и перекиси водорода происходит образование продуктов восстановительного типа, по-видимому, в результате окисления первичных гидроксильных групп до альдегидных и одной из вторичных ОН-групп - до кетогруппы (перекись водорода окисляет также гликолевые группировки с разрывом пиранового цикла). При окислении гипохлоритом в щелочной среде альдегидные группы постепенно превращаются в карбоксильные, вследствие чего продукт окисления имеет кислотный характер. Обработка гипохлоритом - один из наиболее часто применяемых методов отбелки целлюлозы. Для получения высококачественной целлюлозы высокой степени белизны её отбеливают двуокисью хлора или хлоритом в кислой или щелочной среде. При этом происходит окисление лигнина, разрушение красящих веществ, а также окисление альдегидных групп в макромолекуле целлюлозы до карбоксильных; гидроксильные группы не окисляются. Окисление кислородом воздуха в щелочной среде, протекающее по радикальному механизму и сопровождающееся значительной деструкцией целлюлозы, приводит к накоплению в макромолекуле карбонильных и карбоксильных групп (предсозревание щелочной целлюлозы).

Наличие в элементарном звене макромолекулы целлюлозы гидроксильных групп позволяет осуществить переход к таким важным классам производных целлюлозы как простые и сложные эфиры. Эти соединения благодаря ценным свойствам используют в различных отраслях техники - при получении волокон и плёнок (ацетаты, нитраты целлюлозы), пластмасс (ацетаты, нитраты, этиловые, бензиловые эфиры), лаков и электроизоляционных покрытий, в качестве стабилизаторов суспензий и загустителей в нефтяной и текстильной промышленности (низкозамещённая карбоксиметилцеллюлоза).

Волокна на основе целлюлозы (природные и искусственные) - полноценный текстильный материал, обладающий комплексом ценных свойств (высокие прочность и гигроскопичность, хорошая накрашиваемость. Недостатки целлюлозных волокон - горючесть, недостаточно высокая эластичность, лёгкое разрушение под действием микроорганизмов и т. д. Тенденция к направленному изменению (модификации) целлюлозных материалов вызвала появление ряда новых производных целлюлозы, а в некоторых случаях и новых классов производных целлюлозы.

Модификацию свойств и синтез новых производных целлюлозы осуществляют с использованием двух групп методов:

1) этерификацией, О-алкилированием или превращением гидроксильных групп элементарного звена в другие функциональные группы (окисление, нуклеофильное замещение с использованием в качестве исходных веществ некоторых эфиров целлюлозы - нитратов, эфиров с n -толуол- и метансульфокислотой);

2) привитой сополимеризацией или взаимодействием целлюлозы с полифункциональными соединениями (превращение целлюлозы соответственно в разветвлённый или сшитый полимер).

Одним из наиболее общих методов синтеза различных производных целлюлозы является нуклеофильное замещение. Исходными веществами в этом случае служат эфиры целлюлозы с некоторыми сильными кислотами (толуол– и метансульфокислитой, азотной и фенилфосфорной кислотами), а также галогенодезоксипроизводные целлюлозы. С помощью реакции нуклеофильного замещения синтезированы производные целлюлозы, в которых гидроксильные группы заменены галогенами (хлор, фтор, йод), родановой, нитрильной и другими группами; синтезированы препараты дезоксицеллюлозы, содержащие гетероциклы (пиридин и пиперидин), получены эфиры целлюлозы с фенолами и нафтолами, ряд сложных эфиров целлюлозы (с высшими карбоновыми кислотами, α - аминокислотами , непредельными кислотами). Внутримолекулярная реакция нуклеофильного замещения (омыление тозиловых эфиров целлюлозы) приводит к образованию смешанных полисахаридов, содержащих 2, 3– и 3, 6-ангидроциклы.

Наибольшее практическое значение для создания целлюлозных материалов, обладающих новыми технически ценными свойствами, имеет синтез привитых сополимеров целлюлозы. К наиболее распространённым методам синтеза привитых сополимеров целлюлозы относятся использование реакции передачи цепи на целлюлозу, радиационно-химическая сополимеризация и использование окислительно-восстановительных систем, в которых целлюлоза играет роль восстановителя. В последнем случае образование макрорадикала может идти за счёт окисления как гидроксильных групп целлюлозы (окисление солями церия), так и специально введённых в макромолекулу функциональных групп - альдегидных, аминогрупп (окисление солями ванадия, марганца), или разложения диазосоединения, образующегося при диазотировании введённых в целлюлозу ароматических аминогрупп. Синтез привитых сополимеров целлюлозы в ряде случаев может быть проведён без образования гомополимера, что уменьшает расход мономера. Привитые сополимеры целлюлозы, получаемые в обычных условиях сополимеризации, состоят из смеси исходной целлюлозы (или её эфира, на который осуществляется прививка) и привитого сополимера (40-60%). Степень полимеризации привитых цепей колеблется в зависимости от метода инициирования и характера прививаемого компонента от 300 до 28 000.

Изменение свойств в результате привитой сополимеризации определяется характером прививаемого мономера. Прививка стирола, акриламида, акрилонитрила приводит к увеличению прочности хлопкового волокна в сухом состоянии. Прививка полистирола, полиметилметакрилата и полибутилакрилата позволяет получить гидрофобные материалы. Привитые сополимеры целлюлозы с гибкоцепными полимерами (полиметилакрилат) при достаточно большом содержании привитого компонента являются термопластичными. Привитые сополимеры целлюлозы с полиэлектролитами (полиакриловая кислота, полиметилвинилпиридин) можно использовать в качестве ионообменных тканей, волокон, плёнок.

Одним из недостатков волокон из целлюлозы является невысокая эластичность и, как следствие, плохое сохранение формы изделий и повышенная сминаемость. Устранение этого недостатка достигается путём образования межмолекулярных связей при обработке тканей полифункциональными соединениями (диметилолмочевина, диметилолциклоэтиленмочевина, триметилолмеламин, диметилолтриазон, различные диэпоксиды, ацетали), реагирующими с ОН-группами целлюлозы. Наряду с образованием химических связей между макромолекулами целлюлозы происходит полимеризация сшивающего реагента с образованием линейных и пространственных полимеров. Ткани из целлюлозных волокон пропитывают раствором, содержащим сшивающий реагент и катализатор, отжимают, сушат при невысокой температуре и подвергают термообработке при 120-160° в течение 3-5 минут. При обработке целлюлозы полифункциональными сшивающими реагентами процесс протекает главным образом в аморфных участках волокна. Для достижения одинакового эффекта несминаемости расход сшивающего реагента при обработке вискозных волокон должен быть значительно выше, чем при обработке хлопкового волокна, что связано, по-видимому, с более высокой степенью кристалличности последнего.

Чистая целлюлоза или клетчатки (от лат. cellula - «клетка») - это вещества также имеющие непосредственное отношение к сахарам. Их молекулы связаны между собой водородными связями (слабое взаимодействие) и образованы из множества (от 2000 до 3000) остатков B-глюкозы. Целлюлоза - является основным составляющим компонентом любой растительной клетки. Она содержится в древесине, в оболочках некоторых плодов (например, семечек подсолнечника). В чистом виде целлюлоза - это порошок белого цвета, в воде не растворимый и не образующий клейстер. Чтобы оценить "на ощупь" чистую целлюлозу можно взять, например, хлопковую вату или белый пух тополей.
Это практически тоже самое. Если сравнивать целлюлозу и крахмал, то крахмал лучше подвергается гидролизу. Гидролиз целлюлозы проводят в кислотной среде, при этом сначала образуется дисахарид целлобиоза, а затем глюкоза.
Целлюлозу широко применяют в промышленности, очитсив её, изготавливают всем нам знакомый целлофан (полиэтилен и целофан отличаются друг от друга на ощупь (целофан не кажется "жирным" и "шуршит" при деформации), а также искусственное волокно - вискозу (от лат. viscosus - «вязкий»).
Попадая в организм, дисахариды (например, сахароза, лактоза) и полисахариды (крахмал) под действием специальных ферментов гидролизуются с образованием глюкозы и фруктозы. Такое превращение можно легко произвести у себя во рту. Если долго жевать хлебный мякиш, то под действием фермента амилазы содержащийся в хлебе крахмал гидролизуется до глюкозы. При этом во рту возникает сладкий вкус.

Ниже представлена схема гидролиза целлюлозы

Получение бумаги

Чистая целлюлоза

Как Вы думаете,что входит в состав бумаги ?! На сомом деле – это материал, который представляет собой очень тонко переплётённые волокна целлюлозы . Некоторые из таких волокон объединены водородной связью (связь, образующаяся между группами - OH – гидроксильная группа). Способ получения бумаги во 2-м веке до нашей эры уже был известен в древнем Китае. На тот момент бумагу изготавливали из бамбука или хлопка. Позже – в 9 веке нашей эры этот секрет попал в Европу. Для получения бумаги уже в средние века использовались льняные или хлопковые ткани.

Но только в 18 веке нашли наиболее удобный способ получения бумаги – из дерева. А такую бумагу, которой мы сейчас пользуемся, начали изготавливать лишь в 19 веке.

Главным сырьём для получения бумаги является целлюлоза . Сухое дерево содержит приблизительно 40% такой целлюлозы. Остальная часть дерева – это различные полимеры, состоящие из сахаров различных видов, в том числе фруктозы, сложных веществ – фенолспиртов, различных дубильных веществ, солей магния, натрия и калия, эфирных масел.

Получение целлюлозы

Получение целлюлозы связано с механической переработкой древесины и затем проведение химических реакций с опилками. Хвойные деревья измельчают до мелких опилок. Эти опилки помещают в кипящий раствор, содержащий NaHSO 4 (гидросульфид натрия) и SO 2 (сернистый газ). Кипячение проводят при высоком давлении (0,5 МПа) и в течении длительного времени (около 12 часов). При этом в растворе происходит химическая реакция, в результате которой получается вещество гемицеллюлоза и вещество лигнин (лигнин - это вещество, представляющее собой смесь ароматических углеводородов или ароматическую часть дерева), а также основной продукт реакции – чистая целлюлоза , которая выпадает в виде осадка в ёмкости, где проводится химическая реакция. Кроме того, в свою очередь лигнин взаимодействует с сернистым газом в растворе, в результате чего получается этиловый спирт , ванилин, различные дубильные вещества, а также дрожжи пищевые.

Дальнейший процесс получения целлюлозы связан с измельчением осадка при помощи роллов, в результате чего получаются частицы целлюлозы около 1 мм. А когда такие частицы попадают в воду, то сразу набухают и образуют бумагу . На этом этапе бумага ещё не похожа на себя и выглядит, как взвесь волокон целлюлозы в воде.

На следующем этапе бумаге придают её основные свойства: плотность, цвет, прочность, пористость, гладкость, для чего в ёмкость с целлюлозой добавляют глину, оксид титана, оксид бария, мел, тальк и дополнительные вещества, связывающие волокна целлюлозы . Дальше волокна целлюлозы обрабатывают специальным клеем на основе смолы и канифоли. В его состав входят резинаты . Если добавить в этот клей алюмокалиевые квасцы, то происходит химическая реакция и образуется осадок резинатов алюминия. Это вещество способно обволакивать целлюлозные волокна, что придаёт им влагонепроницаемость и прочность. Получившаяся масса равномерно наносится на движущуюся сетку, где она отжимается и высыхает. Здесь уже формирование бумажное полотно . Для придания бумаге большей гладкости и блеска её пропускают сначала между металлическими, а затем между плотными бумажными валами (проводят каландрирование), после чего бумагу режут на листы специальными ножницами.

Как вы думаете, почему со временем желтеет бумага !?

Оказывается, молекулы целлюлозы, которые были выделены из дерева, состоят из большого числа структурных единиц типа С 6 Н 10 О 5 , которые под действием ионов атома водорода в течении определённого времени теряют между собой связи, что приводит к нарушению общей цепочки. При таком процессе бумага приобретает хрупкость и теряет свой первоначальный цвет. Ещё происходит, как говорят, подкисление бумаги . Для того, чтобы восстановить разрушающуюся бумагу, применяют гидрокарбонат кальция Са(НСО 3) 2), который позволяет временно снизить кислотность.

Есть и другой – более прогрессивный способ, связанный с применением вещества диэтилцинка Zn(C 2 H 5) 2 . Но это вещество может самовоспламеняться на воздуха и даже в близости от воды!

Применение целлюлозы

Кроме того, что целлюлозу используют для производства бумаги, ещё пользуются очень полезным её свойством этерификации c различными неорганическими и органическими кислотами. В процессе таких реакций образуются сложные эфиры, которые и нашли применение в промышленности. При самой химической реакции связи, которыми связаны фрагменты молекулы целлюлоза, не разрываются, а получается новое химическое соединение с эфирной группой -COOR-. Одним из важных продуктов реакции является ацетат целлюлозы , который образуется при взаимодействии уксусной кислоты (или её производных, например уксусного альдегида) и целлюлозы. Это химическое соединение широко используется для изготовления синтетических волокон, например, ацетатного волокна.

Ещё один полезный продукт - тринитрат целлюлозы . Он образуется при нитровании целлюлозы смесью кислот: концентрированной серной и азотной. Тринитрат целлюлозы широко используется при изготовлении бездымного пороха (пироксилина). Существует ещё динитрат целлюлозы , который применяется для изготовления некоторых видов пластмасс и


Целлюлоза (C 6 H 10 O 5) n – природный полимер, полисахарид, состоящий из остатков β-глюкозы, молекулы имеют линейное строение. В каждом остатке молекулы глюкозы содержатся три гидроксильные группы, поэтому она проявляет свойства многоатомного спирта.

Физические свойства

Целлюлоза – волокнистое вещество, нерастворимое ни в воде, ни в обычных органических растворителях, гигроскопична. Обладает большой механической и химической прочностью.

1. Целлюлоза, или клетчатка, входит в состав растений, образуя в них оболочки клеток.

2. Отсюда происходит и ее название (от лат. «целлула» – клетка).

3. Целлюлоза придает растениям необходимую прочность и эластичность и является как бы их скелетом.

4. Волокна хлопка содержат до 98 % целлюлозы.

5. Волокна льна и конопли также в основном состоят из целлюлозы; в древесине она составляет около 50 %.

6. Бумага, хлопчатобумажные ткани – это изделия из целлюлозы.

7. Особенно чистыми образцами целлюлозы являются вата, полученная из очищенного хлопка, и фильтровальная (непроклеенная) бумага.

8. Выделенная из природных материалов целлюлоза представляет собой твердое волокнистое вещество, не растворяющееся ни в воде, ни в обычных органических растворителях.

Химические свойства

1. Целлюлоза – полисахирид, подвергается гидролизу с образованием глюкозы:

(C 6 H 10 O 5) n + nН 2 О → nС 6 Н 12 О 6

2. Целлюлоза – многоатомный спирт, вступает в реакции этерификации с образованием сложных эфиров

(С 6 Н 7 О 2 (ОН) 3) n + 3nCH 3 COOH → 3nH 2 O + (С 6 Н 7 О 2 (ОCOCH 3) 3) n

триацетат целлюлозы

Ацетаты целлюлозы – искусственные полимеры, применяются в производстве ацетатного шёлка, плёнки (киноплёнки), лаков.

Применение

Применение целлюлозы весьма разнообразно. Из неё получают бумагу, ткани, лаки, плёнки, взрывчатые вещества, искусственный шёлк (ацетатный, вискозный), пластмассы (целлулоид), глюкозу и многое другое.

Нахождение целлюлозы в природе.

1. В природных волоконцах макромолекулы целлюлозы располагаются в одном направлении: они ориентированы вдоль оси волокна.

2. Возникающие при этом многочисленные водородные связи между гидроксильными группами макромолекул обусловливают высокую прочность этих волокон.

3. В процессе прядения хлопка, льна и т. д. эти элементарные волокна сплетаются в более длинные нити.

4. Это объясняется тем, что макромолекулы в ней хотя и имеют линейную структуру, но расположены более беспорядочно, не ориентированы в одном направлении.

Построение макромолекул крахмала и целлюлозы из разных циклических форм глюкозы существенно сказывается на их свойствах:

1) крахмал является важным продуктом питания человека, целлюлоза для этой цели использоваться не может;

2) причина состоит в том, что ферменты, способствующие гидролизу крахмала, не действуют на связи между остатками целлюлозы.