Блог › Шины — давление и температурные изменения. Давление в шинах - зависимость от температуры

Речь пойдет о зависимости давления в шинах от температуры воздуха.
Немногие помнят (это школьная программа физики), что тепловое расширение газов одинаково для любого газа и есть величина, практически, постоянная. Согласно закону известного французского физика и химика Жозефа Луи Гей-Люссака объем приращения газа прямо пропорционален приращению температуры даже при очень значительных перепадах температуры. Увеличение объема газа в замкнутом сосуде ведет к увеличению давления. Коэффициент объемного расширения газов постоянная величина и одинаков для всех газов.
Известно, что при повышении температуры воздуха на 8 градусов, давление в шинах увеличивается ~ на 0,1 бар.
Именно поэтому накачивание шин азтом или специальной смесью газов (газ придуманный для умных клиентов ) не может обеспечить стабильность давления в шинах при перепадах температуры.
Небольшой эксперимент, проведенный на своем автомобиле, дал интересные результаты.
Как же изменится давление воздуха в шинах с ростом температуры?

Утро. 13 апреля. + 5. Фото сделано на стоянке после ночного простоя автомобиля. Небо чистое, поэтому днем будет солнечно и тепло.



Заднее левое колесо выбираю в роль тестового. Т.к. машина переднеприводная, то давление воздуха в колесе на задней оси разгруженного автомобиля меньше всего зависит от разгонов и торможений, моменты которых в большей степени прикладываются к колесам передней оси, тем самым дополнительно разогревая их.
В холодном состоянии давление равно 2,0 бар (специально откорректировано)


Выезжаю на работу. Впереди более 50 км. Прибыв на работу, сразу провожу повторный замер давления в тестовой шине. Покрышка лишь слегка теплая.
Давление подскочило до 2,15 бар! Физика работает.


Время бежит, Солнце греет. На улице становится по весеннему тепло + 16!


Выезжаю и в активном режиме двигаюсь к пункту назначения в городском потоке.
Пока ехал в пункт назначения заметил - мелкие неровности, стыки и поперечные ямы машина проходит жестче, чем утром.
Спустя 35 км паркую автомбиль на большой асфальтированной стоянке и сразу делаю замер давления в тестовой шине.
2,25 Бар! - это уже приличное увеличение давления (+0,25 бар от первоначального), влияющее на ездовой комфорт и управляемость автомобиля.
Комфорт несколько снижается, а управляемость увеличивается.


Чуть позже выезжаю на трассу и быстро еду домой. Быстро - это 160-180 км/ч на свободных участках 4-х полосного шоссе и активно 100-140 км/ч на двухполосном отрезке трассы. За окном +18. Солнечно.



После остановки еще один замер давления - 2,30 Бар.
+0,05 бар - небольшой прирост относительно городского режима езды.


Небольшой рост давления в трассовом режиме говорит о том, что имеет небольшой коэффициент сопротивления качению, поэтому не нагревается сама из-за внутреннего трения. безусловно, на высоких скоростях роль радиатора отменно выполняет сам протектор с развитой структурой водоотводящих каналов (сейчас они отводят воздух).

Вывод : просто следите за начальным давлением в шинах, а его текущее значение отрегулирует физика. При перепадах температуры воздуха более чем на 15 градусов - обязательно откорретктируйте начальное давление в холодных шинах, чтобы избежать возникновения и проявления излишнего дискомфорта в движении.
Не забывайте увеличивать давление в шинах при полной загрузке автомобиля, согласно требованиям завода производителя авто.

Шины держат на себе вес вашего автомобиля, не так ли? Нет, не так! Вес машины держит находящийся в них воздух. Если вы хотите, чтобы ваши шины демонстрировали всё, на что они способны в том, что касается управляемости, сцепления и износостойкости, следите, чтобы они всегда были хорошо накачаны.
К сожалению, нельзя просто накачать шину – и забыть о ней! Необходимо периодически контролировать давление, чтобы удостовериться, что оно не изменилось со временем под воздействием окружающей температуры или скрытого прокола.
Давление, которое указано в сервисной книжке вашего автомобиля или на информационной табличке, это рекомендованное давление в холодной шине. Это означает, что проверять его нужно утром, до того, как вы совершите длительную поездку, или до того, как солнце или растущая температура воздуха нагреют шину.
Поскольку воздух – вещество газообразное, он расширяется при нагревании и сжимается при охлаждении. Поэтому в большинстве районов России осенью и в начале зимы нужно особенно тщательно следить за давлением: дни становятся короче, температура воздуха падает – и давление в ваших шинах снижается!
При изменении температуры окружающего воздуха на 8°С давление в шине изменится примерно на 0,1 атм. (вырастет при повышении температуры и упадет при понижении).
В большинстве районов России разность средней летней и зимней температур составляет приблизительно 28° С, поэтому с установлением зимних температур давление падает примерно на 0,35 атм. А недостаток 0,35 атм. уже существенно влияет на управляемость, сцепление и износ!
Кроме того, разница между холодной ночной температурой и тёплой дневной в большинстве регионов страны составляет около 11°С. Это значит, что давление, установленное утром, в полдень окажется примерно на 0,13 атм. выше (если автомобиль припаркован в тени). И всё бы ничего, но если вы накачаете колесо в жаркий полдень, на следующее утро давление в холодной шине будет на 0,13 атм. ниже.
И, наконец, если автомобиль припаркован на солнце, то давление искусственным образом ненадолго повысится под действием его тепла.

Мы решили проверить теорию на практике. Сначала мы смонтировали две шины на диски и оставили их полежать на ночь, чтобы уравнять и стабилизировать температуру и давление. Следующим утром мы накачали каждую до 2,45 атм. Одно колесо разместили в тени, а другое выставили на солнце. В течение дня мы замеряли температуру воздуха, температуру шин и давление в них. По мере того, как дневная температура росла с 19°С до 30°С, давление в шине, которая лежала в тени, поднялось с 2,45 до 2,55 атм. Шина, размещённая на солнце, нагревалась за счёт теплового излучения и температуры воздуха. В ней давление выросло с 2,45 до 2,79 атм. В обоих случаях, если бы мы установили нужное давление в полдень, на следующее утро значения были бы на 0,1 – 0,35 атм. ниже.
Затем мы изучали влияние нагрева шин во время езды. Мы решили исключить непостоянные факторы, возникающие в дорожных условиях, и провели тест на нашем «прогревочном» барабанном стенде для спортивной резины. Чтобы сымитировать реальные условия движения, колесо катится по роликам стенда под нагрузкой. Мы фиксировали изменение давления каждые пять минут. Тестовые шины были накачаны до 1,0; 1,4; 1,7 и 2,0 атм. При одинаковой нагрузке давление во всех шинах поднималось примерно на 0,07 атм. каждые 5 минут в течение первых 20 минут движения. Затем давление стабилизировалось и не поднималось выше 0,07 атм. в течение следующих 20 минут. Это означает, что даже если вы ненадолго съездите подкачать шины у ближайшей заправки, на следующее утро вполне можете недосчитаться пары десятых долей атмосферы в колёсах.
Сложите вместе всё сказанное выше, и вы поймёте, что выбрать подходящие условия для подкачки шин почти так же важно, как накачать их.
Важно запомнить, что рекомендуемое для колёс вашего автомобиля давление – это «холодное» давление в шинах. Проверять его нужно утром, прежде чем вы преодолеете десяток километров, или до того как оно изменится под воздействием температуры воздуха и солнечных лучей.
И кстати, если вы живёте на севере и ставите машину в отапливаемый гараж, зимой вы начнёте терять давление, едва выехав из тёплого помещения. Добавьте к холодному давлению в шинах по 0,1 атм. на каждые 10°С разницы в температуре воздуха на улице и в гараже.

Инструкция

Принято различать горный и высокогорный климат. Первый характерен для высот менее 3000-4000 м, второй - для более высоких уровней. Нужно отметить, что климатические условия на высоких обширных плато существенно отличаются от условий на горных склонах, в долинах или на отдельных пиках. Разумеется, отличаются они и от климатических условий, характерных для свободной атмосферы над равнинами. Влажность, атмосферное давление, количество осадков и температура меняются с высотой достаточно сильно.

По мере увеличения высоты плотность воздуха и атмосферное давление убывают, к тому же в воздухе уменьшается содержание пыли и водяного пара, что значительно увеличивает его прозрачность для солнечной радиации, ее интенсивность существенно повышается по сравнению с равнинами. В результате небо выглядит более синим и плотным, а уровень освещенности увеличивается. В среднем атмосферное давление за каждые 12 метров подъема уменьшается на 1 мм ртутного столба, но конкретные показатели всегда зависят от местности и температуры. Чем выше температура, тем медленней убывает давление по мере подъема. Нетренированные люди начинают испытывать дискомфорт в связи с пониженным давлением уже на высоте 3000 м.

С высотой в тропосфере падает и температура воздуха. Причем она зависит не только от высоты местности, но и от экспозиции склонов - на северных склонах, где приток радиации не такой большой, температура обычно заметно ниже, чем на южных. На значительных высотах (в высокогорном климате) на температуру оказывают влияние фирновые поля и ледники. Фирновыми полями называют области особого зернистого многолетнего снега (или даже переходной стадии между снегом и льдом), которые образуются выше снеговой линии в горах.

Во внутренних областях горных массивов в зимнее время может возникать застой выхоложенного воздуха. Это зачастую приводит к возникновению температурных инверсий, т.е. повышению температуры по мере увеличения высоты.

Количество осадков в горах до определенного уровня увеличивается с высотой. Это зависит от экспозиции склонов. Наибольшее количество осадков можно наблюдать на тех склонах, которые обращены к основным ветрам, это количество дополнительно увеличивается, если преобладающие ветра переносят влагосодержащие воздушные массы. На подветренных склонах увеличение количества осадков по мере подъема не так заметно.

Большинство ученых сходятся во мнении, что оптимальной температурой для нормального самочувствия человека является от +18 до +21 градуса, когда относительная влажность воздуха не превышает 40-60%. При изменении данных параметров организм реагирует сменой артериального давления, что особенно замечают лица с гипертонией или гипотонией.

Инструкция

Колебания погоды с существенной сменой температурных режимов, когда перепады составляют более 8 градусов по Цельсию в течение одних суток, негативно влияют на людей с нестабильным артериальным давлением.

При значительном повышении температуры сосуды резко расширяются, чтобы кровь быстрее циркулировала и охлаждала тело. Сердце начинает биться значительно чаще. Все это приводит к резкому изменению артериального давления. У гипертоников при недостаточной компенсации заболевания может произойти резкий скачок, который приведет к гипертоническому кризу.

Гипотоники при повышении температуры воздуха чувствуют головокружение, но при этом сердцебиение становится значительно быстрее, что несколько улучшает самочувствие, особенно если гипотония протекает на фоне брадикардии.

Снижение температуры воздуха приводит к сужению сосудов, давление несколько снижается, но на фоне этого может присутствовать сильная головная боль, так как сужение сосудов может привести к спазму. При гипотонии артериальное давление может снизиться до критических отметок.

По мере того, как погода становится стабильной, вегетативная нервная система приспосабливается к температурному режиму, самочувствие стабилизируется у лиц, не имеющих серьезных отклонений состояния здоровья.

Пациенты с хроническими заболеваниями при сильных перепадах температуры воздуха и атмосферного давления должны особо тщательно контролировать свое здоровье, чаще измерять артериальное давление с помощью тонометра , принимать назначенные врачом препараты . Если на фоне приема обычной дозы фармацевтических средств все-таки наблюдается нестабильное артериальное давление, необходимо обратиться к врачу для пересмотра тактики лечения или изменения доз назначенных препаратов.

Видео по теме

Источники:

  • как меняется температура воздуха в 2017

Температура (t) и давление (P) – две взаимосвязанные между собой физические величины. Проявляется это взаимосвязь во всех трех агрегатных состояниях веществ. От колебания этих величин зависит большинство природных явлений.



Инструкция

Очень тесную взаимосвязь можно найти между температурой жидкости и атмосферным давлением. Внутри любой жидкости существует много маленьких пузырьков воздуха, имеющих свое внутреннее давление. При нагревании в эти пузырьки испаряется насыщенный пар из окружающей его жидкости. Все это продолжается до тех пор, пока внутреннее давление не станет равным внешнему (атмосферному). Тогда пузырьки не выдерживают и лопаются – происходит процесс, который называется кипением.

Аналогичный процесс происходит и в твердых телах при плавлении или при обратном процессе - кристаллизации. Твердое тело состоит из кристаллических решеток , разрушить которые можно при отдалении атомов друг от друга. Давление же, увеличиваясь, действует в обратном направлении – прижимает атомы друг к другу. Соответственно, для того чтобы тело расплавилось, требуется больше энергии и температура повышается.

Уравнение Клапейрона-Менделеева описывает зависимость температуры от давления в газе. Формула выглядит так: PV = nRT. Р – давление газа в сосуде. Так как n и R – постоянные величины, становится ясно, что давление прямо пропорционально температуре (при V=const). Это значит, что чем выше Р, тем выше и t. Этот процесс обусловлен тем, что при нагревании межмолекулярное пространство увеличивается, и молекулы начинают двигаться быстро в хаотичном порядке, а значит чаще ударяться об стенки сосуда , в котором находится газ. Температура в уравнении Клапейрона-Менделеева измеряется обычно в градусах Кельвина.

Обратите внимание

Лед имеет высокую удельную теплоемкость, равную 335 кДж/кг. Поэтому, чтобы его растопить, нужно потратить много тепловой энергии. Для сравнения: таким же количеством энергии можно нагреть воду до 80 °С.

Уменьшение давления воздуха при увеличении высоты – известный научный факт, обосновывающий большое количество явлений, связанных с низким значением давление на большой высоте над уровнем моря.



Вам понадобится

  • Учебник по физике 7 класса, учебник по молекулярной физике, барометр.

Инструкция

Прочитайте в учебнике по физике 7 класса определение понятия давления. Вне зависимости от того, какой вид давления рассматривается, оно равно силе, действующей на единичную площадку. Таким образом, чем больше сила, действующая на некоторую площадь, тем больше значение давления. Если речь идет о давлении воздуха, то рассматриваемой силой является сила тяжести частиц воздуха.

Обратите внимание на то, что каждый слой воздуха в атмосфере создает собственный вклад в давление воздуха нижних слоев. Получается, что с увеличением высоты подъема над уровнем моря растет количество слоев, давящих на нижнюю часть атмосферы. Таким образом, с ростом расстояния до земли увеличивается сила тяжести, действующая на воздух в нижних частях атмосферы. Это приводит к тому, что слой воздуха, расположенный у поверхности земли, испытывает на себе давление всех верхних слоев, а слой, находящийся ближе к верхней границе атмосферы, не испытывает на себе такого давления. Соответственно, воздух нижних слоев атмосферы имеет давление гораздо большее, чем воздух верхних слоев.

Вспомните, как зависит давление жидкости от глубины погружения в жидкость. Закон, описывающий данную закономерность, называется законом Паскаля. Он утверждает, что давление жидкости линейно увеличивается с увеличением глубины погружения в нее. Таким образом, тенденция спада давления с ростом высоты соблюдается и в жидкости, если отсчет высоты начинать со дна емкости.

Заметьте, что физическая сущность повышения давления в жидкости с увеличением глубины та же самая, что и в воздухе. Чем ниже лежат слои жидкости, тем больший им приходится удерживать на себе вес верхних слоев. Поэтому в нижних слоях жидкости давление оказывается больше, чем в верхних. Однако, если в жидкости закономерность повышения давления линейная, то в воздухе это не так. Это обосновано тем, что жидкость не сжимается. Сжимаемость воздуха же приводит к тому, что зависимость давления от высоты подъема над уровнем моря становится экспоненциальной.

Вспомните из курса молекулярно-кинетической теории идеального газа, что подобная экспоненциальная зависимость присуща распределению концентрации частиц с поле тяжести Земли, которая была выявлена Больцманом. Больцмановское распределение, на самом деле, напрямую связано с явлением спада давления воздуха, ибо этот спад и приводит к тому, что концентрация частиц с высотой уменьшается.

Видео по теме

Человек проводит свою жизнь, как правило, на высоте поверхности Земли, которая близка уровню моря. Организм в такой ситуации испытывает давление окружающей атмосферы. Нормальной величиной давления принято считать 760 мм ртутного столба, также такую величину называют «одна атмосфера». Давление, которое мы испытываем снаружи, уравновешивается внутренним давлением. В связи с этим организм человека не ощущает тяжести атмосферы.

Атмосферное давление может меняться в течение суток. Его показатели также зависят от сезона. Но, как правило, такие скачки давления происходят в рамках не более двадцати-тридцати миллиметров ртутного столба.

Подобные колебания не заметны для организма здорового человека. Но вот у лиц, страдающих гипертонической болезнью, ревматизмом и другими заболеваниями, эти перемены способны вызвать нарушения функционирования организма и ухудшение общего самочувствия.

Пониженное атмосферное давление человек может ощутить, когда находиться на горе и взлетает на самолете. Основной физиологический фактор высоты это пониженное атмосферное давление и, вследствие этого, пониженное парциальное давление кислорода.

Организм реагирует на пониженное атмосферное давление, прежде всего, усилением дыхания. Кислород на высоте разряжен. Это вызывает возбуждение хеморецепторов сонных артерий, а оно передается в продолговатый мозг к центру, который отвечает за усиление дыхания. Благодаря этому процессу, легочная вентиляция человека, который испытывает пониженное атмосферное давление, возрастает в необходимых пределах и организм получает достаточный объем кислорода.

Важным физиологическим механизмом, который запускается при пониженном атмосферном давлении, считается усиление деятельности органов, отвечающих за кроветворение. Проявляется этот механизм в увеличении количества гемоглобина и эритроцитов в крови. В таком режиме организм способен транспортировать больше кислорода.