Расположение подкоркового центра слуха. Подкорковые центры. Г- лучистый венец

б- вестибулярные центры

в- центры зрачкового рефлекса

г- ядра блоковидного нерва

348. Какое утверждение является неправильным?

а- ретикулярная формация оказывает активирующие влияния на кору

Б- третий желудочек является полостью среднего мозга

в- поясничные сегменты спинного мозга лежат на уровне X-XI грудных позвонков

г- островковая доля находится в глубине латеральной борозды

349. Какой пункт является «лишним»?

а- эпифиз

б- гипофиз

в- сосцевидные тела

Г- мозолистое тело

350. Какое образование относится к метаталямусу?

б- серый бугор

В- медиальное коленчатое тело

г- шишковидное тело

351. Мозговой свод имеет следующие части:

А- тело, столбы, ножки, спайку

б- тело, валик, колено

в- тело, ствол, клюв

352. Какой из проводящих путей проходит в колене внутренней капсулы?

а- корково-ядерный путь

б- спинно-таламический путь

в- лобно-мостовой путь

г- путь зрительного анализатора

353. Какой пучок волокон белого вещества полушарий не является ассоциативным?

а- крючковидный пучок

б- верхний продольный пучок

в- дугообразные мозговые полоски

Г- лучистый венец

354. Какой части не имеет нижняя лобная извилина?

а- покрышечная часть

б- треугольная часть

в- глазничная часть

Г- угловая часть

355. Какая структура не относится к центральному отделу обонятельного мозга?

а- крючок

Б- обонятельная луковица

в- гиппокамп

г- сосцевидные тела

356. Какая из структур не относится к лимбической системе?

а- центральный отдел обонятельного мозга

б- периферический отдел обонятельного мозга

В- постцентральная извилина

г- миндалевидное тело

357. Укажите неверное утверждение:

а- 15 млрд нейроцитов составляют всего 4% коры, а глия – 96%

б- гиппокамп относится к старой коре (archicortex)

В- крючок, островок и клин находятся в височной доле

г- площадь плаща составляет 1.550 см 2

358. Проекционный центр двигательного (кинестетического) анализатора располагается в:

а- передних рогах спинного мозга

Б- предцентральной извилине и парацентральной дольке

в- гиппокампе

г- островке

359. Сколько полей выделяют в цитоархитектонической карте коры больших полушарий (по К.Бродману)?

а- около 100

360. Ассоциативный центр стереогнозии располагается:

а- в коре верхней теменной дольки (поле № 7)

б- в угловой извилине нижней теменной дольки (поле№ 39)

в- по краям шпорной борозды (поле № 17)

361. В какой извилине находится корковый центр двигательного анализатора устной речи?



а- предцентральная извилина

б- угловая извилина

В- нижняя лобная извилина

г- поясная извилина

362. Какое количество ликвора содержится в ЦНС?

Б- 100-200 мл

в- 300-400 мл

363. Что находится в синусах твердой мозговой оболочки?

б- ликвор

в- венозная кровь

г- артериальная кровь

364. Каково назначение пахионовых грануляций паутинной оболочки?

а- фильтрация питательных веществ из крови в ликвор

Б- фильтрация ликвора из субарахноидального пространства в кровь венозных синусов и лакун

в- обеспечивают отток ликвора в лимфатическое русло

г- образование спинномозговой жидкости

365. Укажите мышцу, которая иннервируется верхней ветвь глазодвигательного нерва:

Слуховые проводящие пути и низшие слуховые центры - это проводниковая афферентная (приносящая) часть слуховой сенсорной системы, проводящая, распределяющая и преобразующая сенсорное возбуждение, порождённое слуховыми рецепторами, для формирования рефлекторных реакций эффекторов и слуховых образов в высших слуховых центрах коры.

Все слуховые центры, начиная от кохлеарных ядер и вплоть до коры головного мозга, устроены тонотопически , т.е. рецепторы кортиева органа проецируются в них на строго определенные нейроны. И, соответственно, эти нейроны обрабатывают информацию о звуках только определённой частоты, определённой высоты звучания. Чем дальше по слухового пути от улитки находится слуховой центр, тем более сложными звуковыми сигналами возбуждаются его отдельные нейроны. это говорит о том, что в слуховых центрах происходит всё более усложняющийся синтез отдельных характеристик звуковых сигналов.

Нельзя считать, что информация о звуковых сигналах обрабатывается только последовательно при переходе возбуждения от одного слухового центра к другому. Все слуховые центры связаны между собой многочисленными сложными связями, с помощью которых осуществляется не только перенос информации в одном направлении, но и её сравнительная обработка.

Схема слуховых путей

1 - улитка (Кортиев орган с волосковыми клетками - слуховыми рецепторами);
2 - спиральный ганглий;
3 - переднее (вентральное) улитковое (кохлеарное) ядро;
4 - заднее (дорзальное) улитковое (кохлеарное) ядро;
5 - ядро трапециевидного тела;
6 - верхняя олива;
7 - ядро латеральной петли;
8 - ядра задних холмиков четверохолмия среднего мозга;
9 - медиальные коленчатые тела метаталамуса промежуточного мозга;
10 - проекционная слуховая зона коры больших полушарий головного мозга.

Рис. 1. Схема слуховых сенсорных путей (по Сентаготаи).
1 - височная доля; 2 - средний мозг; 3 - перешеек ромбовидного мозга; 4 - продолговатый мозг; 5 - улитка; 6 - вентральное слуховое ядро; 7 - дорсальное слуховое ядро; 8 - слуховые полоски; 9 - оливо-слуховые волокна; 10 - верхняя олива: 11 - ядра трапециевидного тела; 12 - трапециевидное тело; 13 - пирамида; 14 - латеральная петля; 15 - ядро латеральной петли; 16 - треугольник латеральной петли; 17 - нижнее двухолмие; 18 - латеральное коленчатое тело; 19 - корковый центр слуха.

Строение слуховых проводящих путей

Схематический путь слухового возбуждения : слуховые рецепторы (волосковые клетки в Кортиевом органе улитки уха) - периферический спиральный ганглий (в улитке) - продолговатый мозг (сначала кохлеарные ядра, т.е. улитковые, после них - ядра оливы) - средний мозг (нижнее двухолмие) - промежуточный мозг (медиальные коленчатые тела, они же внутренние) - кора больших полушарий головного мозга (слуховые зоны височных долей, поля 41, 42).

Первые (I) слуховые афферентные нейроны (биполярные нейроны) находятся в спиральном ганглии, или узле (gangl. spirale), расположенном в основании полого улиткового веретена. Спиральный ганглий состоит из тел слуховых биполярных нейронов. Дендриты этих нейронов проходят по каналам костной спиральной пластинки к улитке уха, т.е. они начинаются от наружных волосковых клеток Кортиева органа. Аксоны выходят из спирального узла и собираются в слуховой нерв, вступающий в области мостомозжечкового угла в ствол мозга, где и заканчиваются синапсами на нервных клетках улитковых (кохлеарных) ядер: дорсального (nucl. cochlearis dorsalis) и вентрального (nucl. cochlearis ventralis). Эти клетки кохлеарных ядер являются вторыми слуховыми нейронами (II).

Слуховой нерв имеет следующие названия: N. vestibulocochlearis, sive n. octavus (PNA), n. acusticus (BNA), sive n. stato-acusticus - равновесно-слуховой (JNA). Это VIII пара черепно-мозговых нервов, состоящая из двух частей: улитковой (pars cochlearis) и вестибулярной, или преддверной (pars vestibularis). Улитковая часть является совокупностью аксонов I нейронов слуховой сенсорной системы (биполярных нейронов спирального ганглия), преддверная - аксоны афферентных нейронов лабиринта, обеспечивающие регулирование положения тела в пространстве (в анатомической литературе обе части также называются нервными корешками).

Вторые слуховые афферентные нейроны (II) находятся в дорсальном и вентральном кохлеарном (улитковом) ядре продолговатого мозга.

От нейронов II кохлеарных ядер начинаются два восходящих слуховых тракта. Контрлатеральный восходящий слуховой путь содержит в себе основную массу выходящих из комплекса кохлеарных ядер волокон и образует три пучка волокон: 1- вентральная слуховая полоска, или трапециевидное тело, 2 - промежуточная слуховая полоска, или полоска Хельда, 3 - задняя , или дорсальная, слуховая полоска - полоска Монакова. Основную часть волокон содержит в себе первый пучок - трапециевидное тело. Средняя, интермедиальная, полоска образована аксонами части клеток заднего отдела заднего вентрального ядра кохлеарного комплекса. Дорсальная слуховая полоска содержит в себе волокна, идущие от клеток дорсального кохлеарного ядра, а также аксоны части клеток заднего вентрального ядра. Волокна дорсальной полоски идут по дну четвертого желудочка, затем уходят в ствол мозга, пересекают среднюю линию и, минуя оливу, не оканчиваясь в ней, присоединяются к латеральной петле противоположной стороны, где поднимаются к ядрам латеральной петли. Эта полоска обходит верхнюю ножку мозжечка, затем переходит на противоположную сторону и присоединяется к трапециевидному телу.

Итак, аксоны II нейронов, отходящие от клеток дорсального ядра (слухового бугорка) , образуют мозговые полоски (striae medullares ventriculi quarti), находящиеся в ромбовидной ямке на границе моста и продолговатого мозга. Большая часть мозговой полоски переходит на противоположную сторону и около средней линии погружается в вещество мозга, подключаясь к латеральной петле (lemniscus lateralis); меньшая часть мозговой полоски присоединяется к латеральной петле своей же стороны. Многочисленные волокна, выходящие из дорсального ядра, идут в составе боковой петли и оканчиваются в нижних бугорках четверохолмия среднего мозга (colliculus inferior) и во внутреннем (медиальном) коленчатом теле (corpus geniculatum mediate) таламуса, это промежуточный мозг. Часть волокон, минуя внутреннее коленчатое тело (слуховой центр), идет в наружное (латеральное) коленчатое тело таламуса, являющееся зрительным подкорковым центром промежуточного мозга, что указывает на тесную связь между слуховой сенсорной системой и зрительной.
Аксоны II нейронов от клеток вентрального ядра участвуют в образовании трапециевидного тела (corpus trapezoideum). Большая часть аксонов в составе боковой петли (lemniscus lateralis) переходит на противоположную сторону и оканчивается в верхней оливе продолговатого мозга и ядрах трапециевидного тела, а также в ретикулярных ядрах покрышки на слуховых нейронах III. Другая, меньшая, часть волокон оканчивается на своей же стороне в тех же структурах. Поэтому именно здесь, в оливах, проходит сравнение акустических сигналов, поступающих с двух сторон от двух разных ушей. Оливы обеспечивают бинауральный анализ звуков, т.е. сопоставляют звуки от разных ушей. Именно оливы обеспечивают стереозвучание и помогают точно нацелиться на источник звука.

Третьи слуховые афферентные нейроны (III) находятся в ядрах верхней оливы (1) и трапециевидного тела (2), а также в нижнем двухолмии среднего мозга (3) и в внутренних (медиальных) коленчатых телах (4) промежуточного мозга. Аксоны III нейронов участвуют в образовании латеральной петли, в которой имеются волокна II и III нейронов. Часть волокон II нейронов прерывается в ядре латеральной петли (nucl. lemnisci proprius lateralis). Таким образом, в ядре латеральной петли тоже есть III нейроны Волокна II нейронов латеральной петли переключаются на III нейроны в медиальном коленчатом теле (corpus geniculatum mediale). Волокна III нейронов латеральной петли, пройдя мимо медиального коленчатого тела, заканчиваются в нижнем двухолмии (colliculus inferior), где формируется tr. tectospinalis. Таким образом, в нижнем двухолмии среднего мозга находится низший слуховой центр, состоящий из IV нейронов .

Нервные волокна латеральной петли, которые относятся к нейронам верхней оливы, из моста проникают в верхние ножки мозжечка и затем достигают его ядер. Таким образом, ядра мозжечка получают слуховое сенсорное возбуждение из слуховых низших нервных центров оливы. Другая часть аксонов верхней оливы направляется к мотонейронам спинного мозга и далее к поперечнополосатым мышцам. Таким образом, слуховые низшие нервные центры верхней оливы управляют эффекторами и обеспечивают двигательные слуховые рефлекторные реакции.

Аксоны III нейронов, расположенных в медиальном коленчатом теле (corpus geniculatum mediate), пройдя через заднюю часть задней ножки внутренней капсулы, формируют слуховое сияние , которое заканчивается на IV нейронах в - поперечной извилине Гешля височной доли (поля 41, 42, 20, 21, 22). Итак, аксоны III нейронов медиальных коленчатых тел образуют центральный слуховой путь, ведущий в слуховые сенсорные первичные проекционные зоны коры больших полушарий головного мозга. Кроме восходящих афферентных волокон, в центральном слуховом пути проходят также и нисходящие эфферентные волокна - от коры к низшим подкорковым слуховым центрам.

Четвёртые слуховые афферентные нейроны (IV) находятся как в нижнем двухолмии среднего мозга, так и в височной доле коры больших полушарий головного мозга (поля 41, 42, 20, 21, 22 по Бродману).

Нижнее двухолмие является рефлекторным двигательным центром , через который подключается tr. tectospinalis. Благодаря этому при слуховом раздражении рефлекторно подключается спинной мозг для выполнения автоматических движений, чему способствует и подключение верхней оливы с мозжечком; подключается также медиальный продольный пучок (fasc. longitudinalis medialis), объединяющий функции двигательных ядер черепных нервов. Разрушение нижнего двухолмия не сопровождается потерей слуха, однако оно играет важную роль "рефлекторного" подкоркового центра, в котором формируется эфферентная часть ориентировочных слуховых рефлексов в виде движения глаз и головы.

Тела корковых нейронов IV образуют колонки слуховой коры, формирующих первичные слуховые образы. От некоторых IV нейронов идут пути через мозолистое тело на противоположную сторону, в слуховую кору контралатерального (противоположного) полушария. Это последний путь слухового сенсорного возбуждения. Он заканчивается тоже на IV нейронах. Слуховые сенсорные образы формируются в высшем нервном слуховом центре коры - поперечной извилине Гешля височной доли (поля 41, 42, 20, 21, 22). Низкие звуки воспринимаются в передних отделах верхней височной извилины, а высокие звуки - в её задних отделах. Поля 41 и 42, а также 41/42 височной области коры относятся к мелкоклеточным (пылевидным, кониокортикальным) чувствующим полям коры мозга. Они располагаются на верхней поверхности височной доли, скрытой в глубине латеральной (сильвиевой) борозды. В поле 41, наиболее мелко- и густоклеточном, заканчивается большая часть афферентных волокон слуховой сенсорной системы. Другие поля височной области (22, 21, 20 и 37) выполняют высшие слуховые функции, например, участвуют в слуховом гнозисе. Слуховой гнозис (gnosis acustica) - это узнавание предмета по характерному для него звуку.

Нарушения (патология)

При заболевании периферических отделов слуховой сенсорной системы в слуховом восприятии возникают шумы, звуки различного характера.

Для понижения слуха центрального происхождения характерно нарушение высшего акустического (звукового) анализа звуковых раздражений. Иногда отмечается патологическое обострение или извращение слуха (гиперакузия, паракузия).

При корковом поражении наступают сенсорная афазия и слуховая агнозия. Расстройство слуха наблюдается при многих органических заболеваниях центральной нервной системы.

О функции промежуточных подкорковых центров относительно мало известно. Они осуществляют безусловную рефлекторную связь с двигательными реакциями на звук: наблюдается поворот головы и глаз, а у животных также и ушной раковины в сторону источника звука. Защитное значение имеет сокращение слуховых мышц в ответ на сильные звуки. Кроме того, наблюдается рефлекторное смыкание век (кохлео-пальпебральный рефлекс Бехтерева) и изменение диаметра зрачка (кохлео- пупиплярный рефлекс Шурыгина).

В корковых центрах звука происходит высший анализ звуковых сигналов, передаваемых из периферической части анализатора, а также синтез в слитный звуковой образ. Особенпой сложностью отличается анализ речевых комплексов и синтез их в словесные понятия.

Помимо афферентных путей , которые соединяют улитку с вышележащими слуховыми центрами, в последнее время найдены эфферентные волокна, путь которых через оливы прослежен вплоть до улитки [Расмуссен, М. Портман (Rasmussen, M. Portmann)]. Этим подтверждается находка В. М. Бехтерева об «обратно идущих путях» в системе звукового анализатора. С большой долей вероятности эти волокна принадлежат к вегетативной нервной системе и выполняют регулирующую адаптационно-трофическую функцию.

Г. В. Гершуни в хроническом опыте на кошках удалось показать, что изменение функционального состояния коры отражается на токах улитки. Этими новыми данными легко объяснить влияние состояния одного уха на другое, например улучшение слуха после удачной фенестрации и тимпанопластики на противоположном, не оперированном ухе.

Основные сведения о локализации корковых центров и процессах , происходящих в них, получены при помощи методики условных рефлексов, опытов с экстирпацией и методом отведения биотоков (при помощи игольчатых электродов).

Эксперименты М. И. Эльяссона , Б. П. Бабкина и др. (лаборатория И. П. Павлова) показали, что слуховые центры у собаки разбросаны по широкой территории коры. После частичной экстирпации звуковой зоны наступает компенсация, восстановление исчезнувших условных рефлексов на звук. Наиболее трудно восстанавливаются (а при большой травме совсем не восстанавливаются) условные рефлексы на порядок следования звуков, на место того или другого звука в музыкальной фразе и на кличку животного.

Таким образом, различение чистых тонов составляет гораздо более легкую задачу, чем анализ комплексных звуков, а тем более анализ речевых сигналов и синтез их в словесные понятия! Этим можно объяснить тот факт, что для поражений корковых центров (например, после сыпного тифа, контузии и т. д.) характерна непропорционально плохая разборчивость и понимание речи при относительно хорошем восприятии чистых тонов (В. Ф. Ундриц и др.).

средний мозг серое белое вещество

Образования среднего мозга участвуют в осуществлении функций зрения и слуха, в регуляции движений и позы, мышечного тонуса, состояний бодрствования и сна, эмоционально-мотивационной активности и некоторых др.

Функционально самостоятельными структурами среднего мозга являются бугры четверохолмия. Верхние из них являются первичными подкорковыми центрами зрительного анализатора (вместе с латеральными коленчатыми телами промежуточного мозга), нижние -- слухового (вместе с медиальными коленчатыми телами промежуточного мозга). В них происходит первичное переключение зрительной и слуховой информации. От бугров четверохолмия аксоны их нейронов идут к ретикулярной формации ствола, мотонейронам спинного мозга. Нейроны четверохолмия могут быть полимодальными и детекторными. В последнем случае они реагируют только на один признак раздражения, например смену света и темноты, направление движения светового источника и т. д. Основная функция бугров четверохолмия -- организация реакции настораживания и так называемых старт-рефлексов на внезапные, еще не распознанные, зрительные или звуковые сигналы. Активация среднего мозга в этих случаях через гипоталамус приводит к повышению тонуса мышц, учащению сокращений сердца; происходит подготовка к избеганию, к оборонительной реакции.

Верхнее двухолмие играет роль зрительного подкоркового центра и служит местом переключения зрительных путей, идущих к латеральным коленчатым телам промежуточного мозга. У низших позвоночных (рыб и амфибий) верхнее двухолмие достигает очень больших размеров и выполняет роль высшего зрительного центра, так как здесь заканчивается большая часть волокон зрительного тракта. Рыбы и амфибии с разрушенным двухолмием (зрительными долями) становятся слепыми.

У птиц и рептилий в среднем мозгу от зрительных путей ответвляются немногочисленные коллатерали, идущие к латеральным коленчатым телам промежуточного мозга. Наконец, у млекопитающих большинство путей зрительного тракта заканчивается на нейронах коленчатых тел, и только часть из них заходит в переднее двухолмие.

Таким образом, в процессе эволюции высший зрительный центр перемещается в конечный мозг, а верхнее двухолмие приобретает роль подкоркового зрительного центра. Его разрушение у млекопитающих не ведет к полной утрате зрения.

Нижнее двухолмие в процессе филогенетического развития формируется у наземных животных (рептилий и птиц) в связи с развитием органа слуха и служит местом переключения слуховых путей, а также афферентных волокон от вестибулярных рецепторов. Нижнее двухолмие выполняет функцию подкоркового слухового центра.

Четверохолмие организует ориентировочные зрительные и слуховые рефлексы.

У человека четверохолмный рефлекс является сторожевым. В случаях повышенной возбудимости четверохолмий при внезапном звуковом или световом раздражении у человека возникает вздра­гивание, иногда вскакивание на ноги, вскрикивание, максимально быстрое удаление от раздражителя, подчас безудержное бегство.

При нарушении четверохолмного рефлекса человек не может быстро переключаться с одного вида движения на другое. Следовательно, четверохолмия принимают участие в организации произвольных движений.

Черная субстанция филогенетически древнее образование относится к экстрапирамидной системе регуляции двигательной активности и функционально связано с лежащими в основании полушарий переднего мозга базальными ганглиями - полосатым телом и бледным шаром. Повреждение черной субстанции, вызывающее дегенерацию дофаминэргических путей к полосатому телу, связано с тяжелым неврологическим заболеванием - болезнью Паркинсона.

В покрышке ножек мозга залегают различные функционально значимые ядра. Наиболее крупным из них является парное красное ядро, представляющее собой удлиненное образование, которое расположено между черной субстанцией и окружающим сильвиев водопровод центральным серым веществом. Красные ядра являются важным промежуточным центром проводящих путей стволовой части мозга. В них заканчиваются волокна экстрапирамидной системы, идущие от базальных ганглиев конечного мозга, а также волокна, идущие из мозжечка.

Аксоны крупноклеточной части красного ядра дают начало нисходящему руброспинальному тракту (Монакова), заканчивающемуся на мотонейронах передних рогов спинного мозга. Этот тракт является конечным звеном древней экстрапирамидной системы, объединяющей влияния переднего мозга, мозжечка, вестибулярных ядер и координирующей работу двигательного аппарата.

Часть аксонов клеток, локализованных в красном ядре, заканчивается на нейронах ретикулярной формации среднего мозга. Она расположена несколько дорсальнее красного ядра и представляет собой продолжение ретикулярной формации заднего мозга. Наряду с активирующей функцией, механизм которой разбирался в предыдущем разделе, ретикулярная формация среднего мозга играет важную роль в регуляции работы глазодвигательного аппарата.

В рефлекторной регуляции глазных движений принимают также участие ядра глазодвигательного (III пара) и блокового (IV пара) черепно-мозговых нервов, раположенные в покрышке под дном сильвиева водопровода. Кпереди от ядра глазодвигательного нерва лежит ядро Даркшевича, от которого начинается медиальный продольный пучок среднего мозга, связывающий между собой ядра глазодвигательного, блокового и находящегося в заднем мозгу отводящего нервов, образуя из них единую функциональную систему, регулирующую сочетанные движения глаз.

Под ядром глазодвигательного нерва лежит непарное вегетативное ядро Якубовича - Эдингера, парасимпатические нейроны которого посылают отростки в периферический цилиарный ганглий. Постганглионарные нейроны цилиарного ганглия иннервируют мышцы радужной оболочки, регулирующей диаметр зрачка, и мышцы ресничного тела, изменяющие кривизну хрусталика. Рефлекторные воздействия нейронов цилиарного ганглия находятся в соответствии с деятельностью соматических глазодвигательных ядер. Как правило, кривизна хрусталика изменяется сопряженно с изменением угла сведения глазных осей.

Таким образом, нейроны ядер глазодвигательного и блокового нервов регулируют движение глаза вверх, вниз, наружу, к носу и вниз к углу носа. Нейроны добавочного ядра глазодвигательного нерва (ядро Якубо­вича) регулируют просвет зрачка и кривизну хрусталика.

Ретикулярная формация среднего мозга играет важную роль в координации сокращений глазных мышц. Она получает афферентные входы от верхних холмов четверохолмия, мозжечка, вестибулярных ядер, зрительных областей коры полушарий головного мозга. Поступающие по этим входам сигналы интегрируются центрами ретикулярной формации и служат для рефлекторного изменения работы глазодвигательного аппарата при внезапном появлении движущихся объектов, при изменении положения головы, при произвольных движениях глаз и т. д. По отношению к моторным центрам в ядрах черепно-мозговых нервов ретикулярная формация выступает как более высокий уровень регуляции глазных движений, осуществляемой за счет возбуждающих и тормозных влияний.

Влияния двигательных зон коры, передающиеся в ретикулярную формацию среднего мозга. Через ответвления волокон пирамидного тракта и мозжечка, опосредуются затем в настроечные влияния на спинномозговые двигательные клетки, обеспечивающие координацию движений и мышечного тонуса. Эти влияния идут из среднего мозга по ретикуло-спинальным путям, меняющим возбудимость двигательных клеток непосредственно или через вставочные нейроны, или опосредованно -- через так называемые гамма-моторную систему, регулирующую чувствительность проприорецепторов мышц. Перерезка среднего мозга между передними и задними двухолмиями вызывает децеребрационную ригидность в виде резкого разгибания конечностей и шеи. Электрическое раздражение определённых пунктов ретикулярной формации среднего мозга приводит к появлению движений (ходьба, бег) у парализованного животного.

В ретикулярной формации расположена значительная часть клеток восходящей активирующей системы, через которую реализуется состояние бодрствования. Повреждения покрышки среднего мозга приводят к возникновению повышенной сонливости (например, при летаргическом энцефалите). Раздражение у животного центрального серого вещества вызывает выраженное аффективное поведение с эмоциями ярости, агрессии, страха. Продолжение в среднего мозга медиального пучка переднего мозга, в состав которого входит основная масса восходящих волокон, начинающихся от клеток продолговатого мозга, моста (варолиева) и среднего мозга, вырабатывающих медиаторы серотонин и катехоламины (норадреналин, дофамин), обусловливает передачу как сомногенных влияний, так и процессы эмоционального (неспецифического) подкрепления. Центральное серое вещество и ретикулярная формация среднего мозга принимают участие в регулировании процессов кровообращения, дыхания, выделения и др.

Ретикулярная формация имеет прямое отношение к регуляции мышечного тонуса, поскольку на РФ ствола мозга поступают сигналы от зрительного и вестибулярного анализаторов и мозжечка. От ретикулярной формации к мотонейронам спинного мозга и ядер черепных нервов поступают сигналы, организующие положение головы, туловища и т. д.

Средний мозг является не только местом замыкания многих жизненно важных рефлексов, но и выполняет существенную проводниковую функцию. Отделенное от покрышки черной субстанцией основание ножек состоит исключительно из нисходящих путей, соединяющих кору больших полушарий с мостом и спинным мозгом. В их числе находятся оба пирамидных тракта, по которым распространяются прямые влияния коры на мотонейроны спинного мозга.

Таким образом, сенсорные функции среднего мозга реализуются за счет поступления в него зрительной, слуховой информации. Проводниковая функция заключается в том, что через него проходят все восходящие пути к вышележащим таламусу (медиальная петля, спииноталамический путь), большому мозгу и мозжечку. Двигательная функция реализуется за счет ядра блокового нерва (n. trochlearis), ядер глазодвигательного нерва (п. oculomotorius), красного ядра (nucleus ruber), черного вещества (substantia nigra).

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Выполнила Л.Г.Дурманова МЕХАНИЗМ ЗВУКОВОСПРИЯТИЯ, ПОДКОРКОВЫЕ И КОРКОВЫЕ ЦЕНТРЫ СЛУХА

2 слайд

Описание слайда:

Человек стал Homo sapiens благодаря своей способности говорить. Хотя слух по значимости занимает второе место после зрения, но без него появление речи было бы невозможно. Выделить из колебаний воздуха только значимые и преобразовать их в понятные звуки и слова может только человеческий слуховой анализатор с его сложнейшим устройством.

3 слайд

Описание слайда:

Ушная раковина, которую в быту мы называем просто ухо, играет роль своеобразного локатора. Однако преувеличивать ее значение не стоит. Если для некоторых животных эта функция ушной раковины еще важна (не зря они прядут ушами, улавливая источник звука), то человек вполне обходится без нее (попробуйте ушами пошевелить – мало у кого это получится). Наружный слуховой проход не только место для образования серы, по нему звук достигает барабанной перепонки, за которой скрыто самое интересное – среднее и внутреннее ухо.

4 слайд

Описание слайда:

Слуховой анализатор человека состоит их четырех частей: Наружное ухо К наружному уху относятся ушная раковина, слуховой проход и барабанная перепонка, которая закрывает внутренний конец слухового прохода. Слуховой проход имеет неправильную изогнутую форму. У взрослого человека длина его составляет около 2,5 см, а диаметр около 8 мм. Поверхность слухового прохода покрыта волосками и содержит железы, выделяющие ушную серу, которая необходима для поддержания влажности кожи. Слуховой проход обеспечивает также постоянную температуру и влажность барабанной перепонки.

5 слайд

Описание слайда:

Наружное ухо Ушная раковина, которая помогает нам определить, откуда исходит звук. Слуховой проход (место, где может скапливаться ушная сера), который служит в качестве звукового канала.

6 слайд

Описание слайда:

Среднее ухо Среднее ухо – это заполненная воздухом полость за барабанной перепонкой. Эта полость соединяется с носоглоткой посредством евстахиевой трубы – узкого хрящевого канала, который обычно находится в закрытом состоянии. Глотательные движения открывают евстахиеву трубу, что обеспечивает поступление воздуха в полость и выравнивание давления по обе стороны барабанной перепонки для ее оптимальной подвижности. В полости среднего уха находятся три миниатюрные слуховые косточки: молоточек, наковальня и стремя. Одним концом молоточек соединен с барабанной перепонкой, другой его конец связан с наковальней, которая, в свою очередь соединена со стременем, а стремя с улиткой внутреннего уха. Барабанная перепонка постоянно колеблется под действием улавливаемых ухом звуков, а слуховые косточки передают ее колебания во внутреннее ухо.

7 слайд

Описание слайда:

Барабанная перепонка, которая туго натянута, подобно коже настоящего барабана, и превращает звуковые колебания в вибрации. Цепочка из трех маленьких косточек, которые называются молоточек, наковальня и стремечко и проводят вибрации во внутреннее ухо. СРЕДНЕЕ УХО

8 слайд

Описание слайда:

Внутреннее ухо Во внутреннем ухе содержится несколько структур, но к слуху отношение имеет только улитка, получившая свое название из-за спиральной формы. Улитка разделена на три канала, заполненные лимфатическими жидкостями. Жидкость в среднем канале отличается по составу от жидкости в двух других каналах. Орган, непосредственно ответственный за слух (Кортиев орган), находится в среднем канале. Кортиев орган содержит около 30000 волосковых клеток, которые улавливают колебания жидкости в канале, вызванные движением стремени, и генерируют электрические импульсы, которые по слуховому нерву передаются к слуховой зоне коры головного мозга. Каждая волосковая клетка реагирует на определенную звуковую частоту, причем высокие частоты улавливаются клетками нижней части улитки, а клетки, настроенные на низкие частоты, располагаются в верхней части улитки. Если волосковые клетки по каким-либо причинам гибнут, человек перестает воспринимать звуки соответствующих частот.

9 слайд

Описание слайда:

Внутреннее ухо Улитка, которая свернута спиралью наподобие настоящей улитки и наполнена жидкостью. Она содержит очень чувствительные клетки, которые называются волосковыми клетками, потому что на конце каждой клетки имеется крошечное образование, похожее на волосок. Волосковые клетки, колеблясь, вырабатывают электрические импульсы которые по слуховому нерву поступают в головной мозг который и распознает их как звуки.

10 слайд

Описание слайда:

11 слайд

Описание слайда:

Слуховые проводящие пути Слуховые проводящие пути – это совокупность нервных волокон, проводящих нервные импульсы от улитки к слуховым центрам коры головного мозга, в результате чего возникает слуховое ощущение. Слуховые центры расположены в височных долях головного мозга. Время, потраченное на прохождение слухового сигнала от внешнего уха к слуховым центрам мозга, составляет около 10 миллисекунд. улитка

12 слайд

Описание слайда:

С окружающим миром барабанная полость сообщается посредством слуховой (евстахиевой) трубы, которая открывается в носоглотке. Она необходима для вентиляции барабанной полости и поддержания в ней давления, одинакового с внешним. Поэтому становится ясно, почему заболевания носоглотки могут осложняться средним отитом. Трансформация механических (звуковых) колебаний в электрический сигнал, который дойдет до отделов мозга, происходит во внутреннем ухе. Воспринимающие звук волосковые клетки располагаются в улитке, которая представляет собой тонкий конус, закрученный в спираль канал из 2,5 витка. У каждой рецепторной клетки (а их количество может достигать до 25 000) на свободном конце имеются от 30-40 до 100-120 микроворсинок-волосков. Деформация волосков приводит к генерации электрических импульсов, а затем к возбуждению волокон слухового нерва, которые передают его в анализаторы головного мозга. При этом разные группы волосковых клеток «настроены» на звуки различной частоты. Высокочастотный звук улавливается клетками, расположенными внизу улитки, низкие частоты регистрируются клетками, находящимися в ее верхней части. Определенную избирательность обнаруживают и нервные элементы слухового анализатора. Таким образом, результат слаженной работы всех его отделов, чисто физический феномен – колебания воздуха, становится основой для деятельности одного из наших органов чувств

13 слайд

Описание слайда:

14 слайд

Описание слайда:

Восприятие звука Ухо последовательно преобразует звуки в механические колебания барабанной перепонки и слуховых косточек, затем в колебания жидкости в улитке и, наконец, в электрические импульсы, которые по проводящим путям центральной слуховой системы передаются в височные доли мозга для распознавания и обработки. Мозг и промежуточные узлы слуховых проводящих путей извлекают не только информацию о высоте и громкости звука, но и другие характеристики звука, например, интервал времени между моментами улавливания звука правым и левым ухом – на этом основана способность человека определять направление, по которому приходит звук. При этом мозг оценивает как информацию, полученную от каждого уха в отдельности, так и объединяет всю полученную информацию в единое ощущение. В нашем мозгу хранятся «шаблоны» окружающих нас звуков – знакомых голосов, музыки, опасных звуков и т.д. При снижении слуха мозг начинает получать искаженную информацию (звуки становятся более тихими), что приводит к ошибкам в интерпретации звуков. Для того чтобы правильно слышать и понимать звуки, необходима согласованная работа слухового анализатора и мозга. Таким образом, без преувеличения можно сказать, что человек слышит не ушами, а мозгом!

15 слайд

Описание слайда:

16 слайд

Описание слайда:

Проводящий путь слухового анализатора. Слуховой нервный импульс --- нервные клетки улитки (их аксоны образуют слуховой нерв)---волокна улиткового нерва –мозг (ядра, расположенные в мосту) ---подкорковые слуховые центры (воспринимаются импульсы подсознательно) ---корковый центр слухового анализатора. Слуховая кора осуществляет обработку информации: анализ звуковых сигналов, дифференцировку звуков. В коре формируются комплексные представления о звуковых сигналах, поступающих в оба уха раздельно, а также она отвечает за пространственную локализацию звуковых сигналов. Нервные импульсы, поступающие по проводящему пути слухового анализатора передаются на покрышечно-спинномозговой путь к передним рогам спинного мозга, а через них к скелетным мышцам. При участии покрышечно –спинномозгового пути замыкается сложная рефлекторная дуга, по которой импульсы вызывают сокращение скелетных мышц в ответ на те или иные звуковые сигналы (сторожевой, оборонительный рефлексы).

17 слайд

Описание слайда:

Путь слухового анализатора состоит из трех нейронов Первые нейроны - это биполярные клетки, находящиеся в спиральном узле улитки.Дендриты этих нейронов идут от волосковых слуховых клеток спирального (кортиева) органа, воспринимающих колебания эндолимфы и превращающих их в нервные импульсы. Аксоны биполярных клеток формируют улитковый нерв, который вместе с преддверным и лицевым нервами через внутренний слуховой проход входит в полость черепа и в мостомозжечковом углу заходит в верхние отделы продолговатого мозга и нижние отделы моста. В стволе мозга улитковый нерв отделяется от преддверного и заканчивается в вентральном и дорсальном слуховых ядрах, где расположены вторые нейроны слухового анализатора. От этих ядер слуховые волокна, к которым присоединяются проводники от дополнительных образований серого вещества (верхней оливы, ядра трапециевидного тела), частично перейдя на противоположную сторону, частично на своей стороне поднимаются в стволе мозга вверх, формируя боковую петлю.Боковая петля, состоящая из перекрещенных и неперекрещенных волокон, поднимается вверх и заканчивается в подкорковых слуховых центрах внутреннем коленчатом теле и нижнем бугорке пластинки крыши среднего мозга. Третий нейрон начинается от внутреннего коленчатого тела, проходит через внутреннюю капсулу и лучистый венец к корковому отделу слухового анализатора, расположенному в извилине Гешля в области заднего отдела верхней височной извилины. Волокна, которые заканчиваются в нижнем бугорке пластинки крыши, имеют связь с подкорковыми двигательными центрами и играют важную роль в пространственной локализации источника звука и обеспечении двигательных реакций на слуховые раздражители.19 слайд

Описание слайда:

Патология слухового анализатора. Различают такие расстройства слуха: полная потеря слуха, глухота (anacusis), снижение слуха (hypacusis), повышение восприятия (hyperacusis). Раздражение патологическим процессом нейрорецепторного слухового аппарата во внутреннем ухе или улиткового нерва сопровождается шумом, свистом, звоном в ухе, голове. Одностороннее снижение или отсутствие слуха возможно лишь при патологии лабиринта внутреннего уха, улиткового нерва или его ядер (в неврологической практике чаще при нейропатии улиткового нерва или его невриноме в мостомозжечковом углу). Одностороннее поражение боковой петли, подкоркового слухового центра или коркового отдела слухового анализатора ощутимых расстройств слуха не вызывает из-за того, что ядра улиткового нерва имеют двустороннюю связь с корковыми слуховыми центрами. В таких случаях может отмечаться лишь некоторое снижение слуха с обеих сторон. Если патологический процесс раздражает корковый отдел слухового анализатора, возникают слуховые галлюцинации, которые иногда могут быть аурой генерализованного судорожного эпилептического приступа.

20 слайд

Описание слайда:

Ослабленный, а тем более полностью потерянный слух - тяжёлый недуг, и учёные давно работают над тем, чтобы облегчить страдания людей с недостатками слуха. В тех случаях, когда нельзя путём лечения возвратить слух, пытаются достичь этого путём усиления звуковой волны. С этой целью применяются усиливающие приборы-протезы. Раньше ограничивались употреблением специальных рупоров, воронок, рогов и разговорных трубок. Теперь нередко применяются электрические усилители. Часто эти приборы бывают настолько малых размеров, что они помещаются в самом ухе, перед барабанной перепонкой.

21 слайд

Описание слайда:

5.2009-2013 LIKEBOOK.RU Электронная библиотека 6.Copyright © 2011-2013 Неврология. Онлайн-энциклопедия nevro-enc.ru 3. www.rostmaster.ru 4.tolkslovar.ru›s15462.html 1.anypsy.ru›Словарь›slukhovoi-analizator 2.BronnikovMethod.ru›tormozyashchee-deystvie-kory…0… ИНТЕРНЕТРЕСУРСЫ ЛИТЕРАТУРА 1.Иванов В.А., Яковлева Е.А. Анатомо-физиологические основы аурикулотерапии. – Курск, 2006 2.Иванов В.А. Анатомия, физиология, патология органов слуха, речи и зрения: Учебное сетевое электронное издание (IMS Content Package)/ В.А.Иванов –Курск: Курск.гос. ун-т, 2010