Open Library - открытая библиотека учебной информации. Исследование белкового обмена печени Определение мочевины в крови и моче

Для оценки состояния белкового обмена, а также функций отдельных органов проводят определение в сыворотке крови общего белка и его фракций, мочевины, креатинина и других составляющих остаточного азота.
Для определения общего белка сыворотки крови используют методы сжигания (къельдалеметрические), рефрактометрические, спектрофотометрические и др. В лабораториях ветеринарной медицины преимущественно пользуются рефрактометрическим и колориметрическим (биуретовым) методами. При определении белковых фракций сыворотки крови используют электрофоретические (на агаровом геле, в полиакриламидном геле, на бумаге, ацетате целлюлозы), турбидиметрические (высаливание нейтральными солями), седиментационные (разделение белков на фракции ультрацентрифугированием) методы и др.
В клинической практике для разделения белков пользуются чаще электрофоретическими и турбидиметрическими методами. При электрофорезе на бумаге получают 5 основных фракций: альбумины, ар, (Х2, Р- и 7-глобулины. Недостатки этого метода - длительность проведения анализа (результаты исследования можно получить только на 2-3-й день), не совсем четкое разделение фракций белков. Электрофорезом на агаровом геле получают более четкое разделение белковых фракций, чем на бумаге, однако сложность процедуры приготовления геля не позволяет широко внедрять этот метод в лабораторную практику. С помощью электрофореза на полиакриламидном геле можно получать около 30 фракций белка. Недостаток метода - трудность количественной оценки полученных фракций.
Унифицированным признан метод электрофореза на ацетате целлюлозы. При отсутствии в лаборатории аппарата для электрофореза используются методы осаждения белков нейтральными солями с последующим турбидиметрическим измерением степени помутнения среды на ФЭКе. Соотношение альбуминов и глобулинов в сыворотке крови определяют белково-осадочными пробами (сулемовой, с цинк-сульфатом, тимоловой и др.).
Под остаточным азотом понимают количество его, которое остается в крови после осаждения белков. Сюда входит азот мочевины, аминокислот, креатинина, креатина, мочевой кислоты, инди- кана, аммиака, полипептидов, нуклеотидов, биогенных аминов и других продуктов белкового обмена. Основная часть остаточного азота крови - азот мочевины, на долю которого приходится не менее 1/2 всего небелкового азота крови.
Около 1 /4 остаточного азота составляет азот аминокислот, креатина и креатинина. Наибольшее клиническое значение имеет определение отдельных фракций остаточного азота, в частности мочевины, аминного азота, креатина и креатинина, мочевой кислоты, индикана.
Для определения мочевины в крови, моче и других биологических жидкостях применяют диацетилмонооксимные, уреазные, ги- похлоритные, гипобромидные, ксантгидроловые и другие методы. Наиболее распространенным является колориметрический метод, основанный на взаимодействии мочевины с диацетилмоноокси- мом с образованием окрашенных продуктов (реакция Фирона). Однако более точными и специфическими являются методы определения мочевины с использованием фермента уреазы.
Для определения белка, альбумина, мочевины, креатинина, а также других биохимических показателей возможно применение отражательных фотометров и диагностических полосок системы «сухой химии», биохимических автоанализаторов. Пробирки для взятия крови не должны содержать детергенты и другие моющие средства. Хранят их закрытыми.

Еще по теме МЕТОДЫ ОЦЕНКИ СОСТОЯНИЯ БЕЛКОВОГО ОБМЕНА:

  1. МЕТОДЫ ОЦЕНКИ СОСТОЯНИЯ ВОДНО-ЭЛЕКТРОЛИТНОГО И МИНЕРАЛЬНОГО ОБМЕНОВ
  2. БОЛЕЗНИ НАРУШЕНИЙ БЕЛКОВОГО, УГЛЕВОДНОГО И ЖИРОВОГО ОБМЕНА ОЖИРЕНИЕ - ADIPOSITAS
  3. ОЦЕНКА СОСТОЯНИЯ РАСТИТЕЛЬНОГО ПОКРОВА ПОСЛЕСИЛЬНОГО ТОРФЯНОГО ПОЖАРА
  4. Определение белковых фракций в сыворотке крови турбидимет- рическим (нефелометрическим) методом.
  5. ОПЫТ количественной оценки динамических СОСТОЯНИЙ И УСТОЙЧИВОСТИ СОСНОВЫХ НАСАЖДЕНИЙ НАОБЪЕКТАХ ГИДРОМЕЛИОРАЦИИ

Определения общего белка в сыворотке \плазме\ крови и других биологических жидкостях.

Все известные способы определения концентрации общего белка в сыворотке крови подразделяют на следующие основные группы:

1.Азотометрические, основанные на установлении количества белкового азота - метод Кьельдаля и его модификации.

2.Способы, состоящие в определении плотности сыворотки - неточные, т.к. плотность зависит не только от содержания белков.

3.Весовые - белки сыворотки крови осаждают, высушивают до постоянного веса и взвешивают на аналитических весах. Методы трудоемки и требуют большого количества сыворотки.

4.Рефрактометрические - не совершенны, т.к. часть рефракции обуславливается иными компонентами сыворотки.

5.Колориметрические - наиболее распространенным является биуретовый метод, являющийся унифицированным.

6.Другие методы - нефелометрические, поляриметрические, спектрофотометрические не получили широкого распространения.

Отечественной промышленностью налажен выпуск наборов для исследования концентрации общего белка в сыворотке крови по биуретовой реакции. На этом же принципе основано измерение уровня общего белка в биологических жидкостях с помощью реактивов, поставляемых различными фирмами.

Определение общего белка в сыворотке крови по биуретовой реакции.

Реактивы.

1.0,9% раствор хлористого натрия /0,9 г хлористого натрия на 100 мл дистиллированной воды/.

2.0,2Н раствор едкого натрия, свободного от углекислого газа /20 мл 1Н едкого натрия доводят до 100 мл прокипяченной дистиллированной водой/.

3.Биуретовый реактив: 4,5г сегнетовой соли растворяют в 40 мл 0,2Н раствора едкого натрия, затем прибавляют 1,5 г сернокислой меди и 0,5 г едкого натра. Хранят в посуде из темного стекла, раствор стоек.

4.0,5% раствор йодистого калия в 0,2Н растворе едкого натрия.

5.Рабочий раствор биуретового реактива: 20 мл биуретового реактива смешивают с 80 мл раствора йодистого калия. Раствор стоек.

6.Стандартный раствор альбумина из человеческой или бычьей сыворотки: 10% раствор альбумина в 0,9% растворе хлористого натрия /1 мл раствора содержит 0,1 г белка - 100г/л/.

Принцип метода.

Белки реагируют в щелочной среде с сернокислой медью с образованием соединений, окрашенных в фиолетовый цвет \биуретовая реакция/.

Ход определения: к 5 мл рабочего раствора биуретового реактива прибавляют 0,1 мл сыворотки, смешивают, избегая образования пены. Через 30 мин \ и не позднее часа\ измеряют на ФЭКе в кювете с толщиной слоя 1 см при длине волны 540-560 нм \зеленый светофильтр\ против контроля.

Контроль : к 5 мл рабочего раствора биуретового реактива прибавляют 0,1 мл 0,9% раствора хлористого натрия, далее обрабатывают как опыт.

Расчет ведут по калибровочному графику.

Нормальные величины общего белка - 65-85 г\л.

Построение калибровочного графика.

Реактив: стандартный раствор альбумина 10% в 0,9% растворе хлористого натрия, 1 мл которого содержит 0,1 г белка. Для приготовления реактива можно использовать лиофилизированный альбумин из набора «Билирубин-эталон» фирмы Лахема. В инструкции набора указывается содержание альбумина в мг. Исходя из этого, делаем расчет, сколько необходимо к данному альбумину прилить 0,9% хлористого натрия, чтобы получить в 1 мл раствора 0,1 г белка.

Например: в инструкции набора указано, что лиофилизированный альбумин содержит 160 мг альбумина. Расчет: стандартный 10% раствор содержит 10г или 10 000 мг в 100 мл

в эталоне 160 мг в Х

Х = 1,6 мл, т.е. добавляем в бутылочку, где содержится альбумин 1,6 мл 0,9% хлористого натрия и получаем, что 1 мл этого раствора содержит 0,1 г белка.

После приготовления стандартного раствора готовим из него серию рабочих разведений по таблице:

Вычисление концентрации белка в г\л.

1 мл стандартного 10% р-ра содержит 0,1 г белка

0,04 г белка содержится в 1 мл раствора

Х в 1 000 мл

Из каждого рабочего разведения соответствующей концентрации берут по 0.1 мл в 3-4 пробирки, т.е. каждое определение проводят в 3-4 параллелях и в каждую пробирку прибавляют по 5 мл биуретового реактива. Через 30-60 мин колориметрируют на ФЭКе против контроля. Получаем на каждую концентрацию 3-4 показания оптической плотности. Находим из них среднее арифметическое, предварительно отбросив резко отклоняющиеся показания.

Строим калибровочный график: по оси абсцисс откладываем концентрацию белка в г\л, т.е. 40-60-80-100г\л; а по оси ординат показания оптических плотностей, полученных на ФЭКе \среднее арифметическое/.

Калибровочная кривая должна иметь вид примой, проведенной через 3 точки. Данную кривую проверяют на сыворотках доноров \не менее 3-4 определений\. При получении нормальных показаний белка, т.е. в пределах нормы; построенную калибровочную кривую используют в работе.

Примечание.

1.Калибровочную кривую необходимо строить не менее 1 раза в год, а также каждый раз после ремонта и на вновь полученном фотоэлектроколориметре.

2.Линейная зависимость между оптической плотностью и концентрацией сохраняется до Д=0,5. Если в сыворотке содержится большее количество белка, то сыворотку разводят хлористым натрием вдвое.

Определение мочевины в крови и моче.

Мочевина является основным азотсодержащим продуктом катаболизма белков.

При распаде белков накапливается аммиак – токсичное вещество. Основным путем обезвреживания аммиака является синтез мочевины в печени. Концентрация мочевины в крови зависит от скорости ее образования в печени и удаления из организма через почки с мочой.

У большинства пациентов скорость образования мочевины отражает скорость утилизации и распада клеточного белка.

При тяжелой патологии печени способность гепатоцитов синтезировать мочевину нарушается, аммиак накапливается, а содержание мочевины в крови снижается.

Выведение образовавшейся мочевины происходит с мочой и зависит от выделительной функции почек.

Определение мочевины проводится следующими методами:

1. Химический метод по цветной реакции с диацетилмонооксимом.

2. Ферментативный метод (уреазный)

3. Метод «сухой химии».

Определение мочевины по реакции с диацетилмонооксимом.

Реактивы.

1.Диацетилмонооксим и тиосемикарбазид или реагент в таблетках.

2.Эталонный или стандартный раствор, содержащий в 100 мл 100 мг мочевины или в 1 мл - 1 мг.

Приготовление растворов.

Раствор реагента: 1 таблетку растворить при нагревании в мерной колбе на 50 мл в 30 мл дистиллированной воды. После охлаждения довести объем до отметки. Раствор устойчив несколько недель.

Раствор серной кислоты: в мерную колбу на 250 мл вносят 150 мл дистиллированной воды и 25 мл 96% серной кислоты ЧДА. Нагревают после охлаждения доводят объем до метки. Раствор устойчив.

Рабочий раствор реагента и серной кислоты готовится перед реакцией в соотношении 1:1 (см. схему определения).

Принцип метода.

Мочевина образует с диацетилмонооксимом при наличии тиосемикарбазида и солей железа в сильно кислой среде комплекс красного цвета, интенсивность окраски пропорциональна концентрации мочевины.

Ход определения.

Реактивы Опыт Контроль Стандарт

1.сыворотка 0,02 - -

2.рабочий раствор

а\раствор реагента 2,0 2,0 2,0

б\раствор серной

кислоты 2,0 2,0 2,0

3.стандартный р-р

мочевины - - 0,02

Выдержать 10 минут в кипящей водяной бане. Охладить 2-3 минуты в струе холодной воды. Колориметрировать не позднее, чем через 15 минут: светофильтр зеленый \при длине волны 490-540\, кювета на 1 см, против контроля.

Расчет : До

Х= -------- * С ст в ммоль\л, где

До - оптическая плотность опыта;

Дст - оптическая плотность стандартного раствора мочевины или эталона;

С ст - концентрация мочевины в стандартном растворе;

Х - концентрация мочевины в пробе сыворотки.

Для пересчета мг % в ммоль\л используется коэффициент – 0,1665.

Нормальные величины мочевины в сыворотке крови - 2,5 -8,3 ммоль\л.

Примечания.

1. Выше приведенный ход определения можно модифицировать, увеличив объемы всех отмериваемых растворов в 2-3 раза, в зависимости от объема кювет.

3. Перерасчет показателей мочевины в азот мочевины можно сделать умножением на фактор 0,466.

4. Тиосемикарбазид является ядовитым реактивом. При работе с ним необходимо соблюдать правила работы с ядовитыми веществами.

Белок – это основное азотсодержащее органическое вещество. Один грамм азота содержится в 6,25 грамм белка (азотистый коэффициент), т. е. белок примерно на 16% состоит из азота. Следовательно, исследовав обмен азота в организме, можно оценить состояние белкового обмена. Об интенсивности синтеза белков можно судить по количеству поступившего в организм азота, распад белков можно оценить по количеству выведенного азота с мочой и потом (количество азота, теряемого с потом, незначительно в обычных условиях, поэтому азот пота принято чаще всего не учитывать). Сопоставить синтез и распад белков можно, определив азотистый баланс.

Азотистый баланс – это соотношение количества поступившего в организм и выведенного из него азота. Выделяют следующие виды азотистого баланса - положительный, отрицательный и азотистое равновесие. Положительный азотистый баланс: поступление азота в организм превышает выведение его из организма (ретенция азота в организме). Это свидетельствует о том, что синтез белка превышает его распад. В норме такой вид азотистого баланса встречается при росте организма, во время беременности, реконвалесценции, прибавлении мышечной массы при занятиях спортом. Отрицательный азотистый баланс – поступление азота меньше его выделения из организма. Это свидетельствует о том, что синтез белка меньше его распада. Такой вид азотистого баланса встречается в следующих ситуациях:

1) белковое голодание (поступает недостаточное количество белков в организм или с пищей поступают неполноценные белки. Неполноценный белок не содержит одну или несколько незаменимых аминокислот);

2) нарушение всасывания аминокислот;

3) старение;

4) болезни или состояния, сопровождающиеся выраженным распадом тканей (опухоли, кахексия);

5) снижение синтеза белка из-за ферментопатии.

Азотистое равновесие – поступление и выведение азота одинаковое. Свидетельствует об одинаковой интенсивности синтеза и распада белка (Рагузин А.В., Сетко Н.П., Ширшов О.В., Фатеева Т.А 2001)

ЗАКЛЮЧЕНИЕ

Белки (протеины) – это сложные высокомолекулярные азотсодержащие соединения, состоящие из аминокислот. Набор и последовательность аминокислот в белке характеризуют как его биохимическую специфичность, так и ценность в питании. Из нескольких десятков известных в настоящее время аминокислот в составе пищевых продуктов содержится 20.

Аминокислоты, из которых состоят белки, делят на заменимые и незаменимые.Незаменимые аминокислоты обязательно должны поступать с пищей в необходимых количествах и в определенных соотношениях. Заменимые аминокислоты могут претерпевать в организме взаимопревращения или образовываться из незаменимых в результате различных биохимических превращений (реакции переаминирования, синтез из небелковых соединений с использованием аммиака в качестве источника азота). К незаменимым аминокислотам относятся аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, триптофан, фенилаланин, треонин (причем аргинин и гистидин считаются незаменимыми для детей в возрасте до 3 лет). Заменимые аминокислоты: аланин, аспарагин, аспарагиновая кислота, глицин, глутаминовая кислота, глутамин, серин, цистин, тирозин, пролин.

Белки организма человека выполняют жизненно важные функции: пластическую, энергетическую, каталитическую, регуляторную, защитную, транспортную, рецепторную.

Согласно физиологическим нормам питания, действующим в нашей стране, общее количество белка в рационах питания детей должно составлять удвоенное количество по сравнению с обеспечивающим азотистый баланс или азотистое равновесие, а для взрослого населения -1,5 количество. Для дошкольников - 53- 69 г, для школьников - 77-98 г, для взрослого населения: у женщин - 58-87 г и у мужчин - 65-117 г (в зависимости от их профессиональной деятельности).

СПИСОК ЛИТЕРАТУРЫ

1. Рагузин А.В., Сетко Н.П., Ширшов О.В., Фатеева Т.А. Физиолого – гигиенические аспекты обмена веществ, обмена энергии и рационального питания: Методическое пособие для самостоятельной работы студентов медико-профилактического факультета – Оренбург: Издательский центр ОГАУ, 2001. - 40 с.

2. Физиология человека/Под редакцией Г.И. Косицкого – М.: «Медицина», 1985. – 560 с.

3. Биохимия: Учеб. для вузов / В.П. Комов, В.П. Шведова. – М.: Дрофа, 2004. – 640 с.

4. Руководство к практическим занятиям по гигиене питания: учеб. пособие для вузов/ Сетко Н.П., Сетко А.Г., Фатеева Т.А., Володина Е.А., Тришина С.П., Чистякова Е.С.; под общ. Ред. Н.П. Сетко. – Оренбург: ОрГМА, 2011. – 652 с.




Методы исследования белкового обмена: Электрофоретический – основан на разделении белков в постоянном электрическом поле в зависимости от величины белковой молекулы. Ультрацентрифугирование – основано на различной скорости седиментации отдельных белков в зависимости от их молекулярной массы. Хроматографические: - Ионнообменная хроматография основана на различной способности отдельных белков к обмену с ионами ионнообменных смол, - Хроматография на молекулярных ситах (гельфильтрация) – на сефадексах – белки разделяются в зависимости от величины молекулы, - Аффинная хроматография – белки делятся на индивидуальные в зависимости от сродства к аффинату (наполнителю колонок).


Высаливание – основано на удалении водной оболочки различными концентрациями солей щелочных и щелочно-земельных металлов и иона аммония. Это старый метод разделения белков. Использование цветных реакций – например биуретовая на общий белок, ксантопротеиновая на циклические аминокислоты,интенсивность окраски измеряют колориметрически. Иммунологические методы – используют для количественного определения индивидуальных белков. При взаимодействии со специфической антисывороткой образуется мутный раствор, интенсивность помутнения измеряют колориметрически.




Подготовка обследуемых: Забор крови делают утром с 8 до 10 часов утра. В экстренных случаях взятие крови осуществляется в любое время дня. Кровь берут натощак, после 8-12-часового голодания. Воздержание от приема алкогольных напитков не менее 24 часов. Исключается физическое напряжение и эмоциональное возбуждение, для чего дают обследуемому отдохнуть 15 минут.


Получение и хранение биологического материала: Желтушные, гемолизированные, хилезные сыворотка или плазма не пригодны для исследования. Для получения плазмы венозную кровь собирают в чистую, сухую пробирку с антикоагулянтом. Соли ЭДТА, гепарин, гепаринат лития, оксалат натрия, цитраты снижают результаты. Центрифугирование проводят в обычном режиме не позднее 3 часов от забора материала.


Для получения сыворотки крови венозную кровь собирают в чистую, сухую пробирку. Центрифугирование проводят в обычном режиме не позднее 3 часов от забора материала. Для исследования мочи используют утреннюю порцию. Исследование проводят не позднее, чем через 2 часа после взятия пробы.


Условия хранения биологического материала: Биологический материал хранят в хорошо закрытых контейнерах. Цельная кровь не пригодна для хранения, даже в присутствии консервантов. Плазму и сыворотку можно хранить 1 день при комнатной температуре, 7 дней при 4-8 С, от 3 до 6 месяцев при –20 С. В закрытых сосудах белок стабилен в моче 2 дня при комнатной температуре, до 17 дней в холодильнике (4-8 С).


Примечания: уровень общего белка может зависеть от возраста (у детей и пожилых ниже), пола (у мужчин выше), характера питания. Повышение белков в крови вызывают следующие факторы: длительное пребывание в вертикальном положении, стресс, прием алкоголя, некоторые лекарственные препараты (цефотаксим, фуросемид, фенобарбитал, преднизалон, прогестерон). Понижение уровня белков в крови вызывают: травма, курение, беременность, голодание, перерыв в приеме алкоголя, нарушение питания, ожирение, некоторые лекарственные препараты (декстран, ибупрофен, пероральные контрацептивы).


Домашнее задание Пустовалова Л.М. Основы биохимии для медицинских колледжей стр

Для изучения обмена веществ в организме и отдельных органах существует разнообразные методы. Одним из старинных является метод балансовых опытов , заключающийся в том, что изучают количество поступивших органических веществ и количество образовавшихся конечных продуктов.

Для изучения обмена веществ в отдельных органах применяют метод изолированных органов . Органы, способные сохранять в течение некоторого времени свою жизненную активность и могут использовать для своей деятельности питательные вещества, пропускающие через кровь.

Для изучения обмена веществ в отдельных органах - метод ангеостомии. Разработал Лондон. На кровеносные сосуды накладывают специальные трубочки, которые позволяют получить притекающую кровь к какому-либо органу. По изменению химического состава крови судят о процессе обмена веществ.

В настоящее время широко используется метод меченых атомов – основанный на использовании соединений, в молекулы которых включены атомы тяжелых и радиоактивных изотопов биоэлементов. Вводят в организм соединения, меченные такими изотопами, используют радиометрические методы анализа можно проследить за судьбой элементов или соединений в организме и о его участии в метаболических процессах.


59 вопрос Обмен белков. Классификация их (два вида) и характеристика. Значение для организма. Биологическая ценность белков. Азотистый баланс. Роль печени в белковом обмене. Особенности белкового обмена у жвачных. Регуляция белкового обмена

Обмен белков ФУНКЦИИ БЕЛКОВ

Пластическая функция белков состоит в обеспечении роста и развития организма за счет процессов биосинтеза.

Ферментативная активность белков регулирует скорость протекания биохимических реакций.

Защитная функция белков состоит в образовании иммунных белков - антител. Белки способны связывать токсины и яды а также обеспечивать свертываемость крови (гемостаз).

Транспортная функция заключается в переносе кислорода и двуокиси углерода эритроцитным белком гемоглобином , а также в связывании и переносе некоторых ионов (железо, медь, водород), лекарственных веществ, токсинов.

Энергетическая роль белков обусловлена их способностью освобождать при окислении энергию.


Белковый обмен проходит четыре основных этапа:

Расщепление белка в ЖКТ и всасывание в виде аминокислот;

Центральное звено обмена – синтез из аминокислот собственных белков организма и расщепление белка в клетках;



Межуточные превращения аминокислот в клетках;

Образование и выведение конечных продуктов белкового обмена.


Азотистый баланс

Косвенным показателем активности обмена белков служит так называемый азотистый баланс - разность между количеством азота, поступившего с пищей, и количеством азота, выделяемого из организма в виде конечных метаболитов.

Азотистое равновесие - количество поступившего азота равно количеству выделенного (отмечают у взрослого здорового животного в нормальных условиях кормления и содержания)

Положительный азотистый баланс превышает выделенное.

Отрицательный азотистый баланс - состояние, при котором количество поступившего азота меньше выделенного.

При расчетах азотистого баланса исходят из того факта, что в белке содержится около 16% азота, то есть каждые 16 г азота соответствуют 100 г белка (100:16=6,25).


Белковый минимум

Наименьшее количество вводимого с пищей белка, способствующее поддержанию азотистого равновесия.


МРС, свиньи – 1г/кг живой массы

Лошади – 0,7-0,8 (1,2-1,42)

Коровы – 0,6-0,7 (1)

Человек – 1,5-1,7 (белковый оптимум).


Вне зависимости от видоспецифичности все многообразные белковые структуры содержат в своем составе всего 20 аминокислот . Для нормального метаболизма имеет значение не только количество получаемого белка, но и его качественный состав, а именно соотношение заменимых и незаменимых аминокислот .

Незаменимых аминокислот для моногастричных животных, птиц и человека 10: дизин, триптофан, гистидин, фенилаланин, лейцин, изолейцин, метионин, валин, треонин, аргинин.

Биологическая ценность белков

У жвачных и некоторых других видов животных есть свои особенности в обмене белка: микрофлора преджелудков способна синтезировать все незаменимые аминокислоты и, следовательно, могут обходиться кормом без незаменимых аминокислот.



Белки в которых нет хотя бы одной незаменимой аминокислоты или если они содержатся в недостаточных количествах называются неполноценными (растительные белки ).

Обмен аминокислот

Основное место обмена аминокислот – печень:

дезаминирование – отщепление аминогруппы (в виде аммиака) с образованием жирных кислот, оксикислот, кетокислот;

трансаминирование – перенос аминогрупп из аминокислот в кетокислоты с образованием другой аминокислоты и кетокислоты без промежуточного образования аммиака;

декарбоксилирование – отщепление карбоксильной группы в виде углекислоты с образованием биогенных аминов.


Регуляция белкового обмена

Глюкокортикоиды - ускоряют распад белков и аминокислот, в результате чего усиливается выделение азота из организма.

Механизм действия СТГ состоит в ускорении утилизации аминокислот клетками. Соответственно, при акромегалии и гипофизарном гигантизме наблюдается положительный азотистый баланс, при гипофизэктомии и гипофизарном нанизме – отрицательный.

Тироксин : при гиперфункции щитовидной железы повышается обмен белков

Гипофункция сопровождается замедлением обмена веществ, останавливается рост и развитие организма.

В печени происходит не только синтез белка, но и обеззараживание продуктов их гниения. В почках совершается дезаминирование продуктов азотистого обмена.