Ступенчатая пцр. ПЦР: что это такое? Диагностика инфекционных заболеваний методом полимеразной цепной реакции. применение ПЦР в неонатологии

Проведение ПЦР-анализа (PCR diagnostics) начинается с забора материала для исследования врачом-гинекологом, урологом или дерматовенерологом. Качество, достоверность полученных впоследствии результатов обеспечивается высочайшей квалификацией и огромным опытом работы врачей медицинского центра «Евромедпрестиж» , соблюдающих все необходимые правила проведения ПЦР-анализа: полная стерильность, использование исключительно одноразовых материалов.

Забранный материал со щеточки помещают в контейнер с физраствором. После забора пробы как можно скорее должны быть доставлены в ПЦР — лабораторию.

Проведение в лаборатории ПЦР-анализа происходит в три этапа:

  1. Выделение ДНК
  2. Амплификация ДНК-фрагментов
  3. Детекция ДНК-продуктов амплификации

Выделение ДНК — это первоначальный этап проведения ПЦР-диагностики, суть которого заключается в следующем: врач забирает у пациента материал для исследования и подвергает его специальной обработке. В процессе обработки происходит расщепление двойной спирали ДНК на отдельные нити. В материал пациента добавляется специальная жидкость, растворяющая органические вещества, мешающие «чистоте» проведения реакции. Таким образом удаляются липиды, аминокислоты, пептиды, углеводы, белки и полисахариды. В результате образуется ДНК или РНК.

Принцип метода ПЦР заключается в «строительстве» новых ДНК или РНК инфекций. Без удаления клеточного материала осуществить это невозможно.

Количество времени, затраченного на выделение ДНК, зависит от возбудителя инфекции и от вида используемого для исследования методом ПЦР материала. Например, для подготовки крови к следующему этапу требуется 1,5-2 часа.

0Array ( => Анализы) Array ( => 2) Array ( =>.html) 2

Амплификация ДНК

Для осуществления следующего этапа ДНК-диагностики — амплификации ДНК — врачи используют так называемые ДНК-матрицы — молекулы ДНК инфекций, на которые впоследствии будет происходить «клонирование» ДНК. Уже упоминалось, что наличие полной ДНК инфекции необязательно, для проведения этого этапа достаточно небольшого кусочка молекулы ДНК, который присущ только данному микробу (инфекции).

В основе амплификации ДНК и соответственно в основе всего принципа ПЦР-реакции лежит естественный для всего живого процесс достраивания ДНК — репликации ДНК, который осуществляется путем удвоения единичной цепочки ДНК.

Начав с одного-единственного фрагмента ДНК, врач-лаборант копирует его и увеличивает количество копий в режиме цепной реакции: после первого цикла у вас уже есть 2 фрагмента, после второго цикла — 4, после третьего — 8, после четвертого — 16, затем 32, 64, 128, 256... С каждым циклом происходит удвоение числа копий, и после двадцати циклов счет уже идет на миллионы, а после тридцати — на миллиарды. Цикл длится считанные минуты и сводится к определенному изменению температурного режима в очень небольшом химическом реакторе. Здесь в растворе в достаточном количестве находятся все нужные компоненты синтеза, прежде всего, нуклеотиды А, Г, Т и Ц, а также проведены тонкие подготовительные химические операции для того, чтобы с каждого готового отрезка ДНК тут же снималась точная копия, затем с этой копии — снова копия, в этом и состоит разветвленная цепная реакция.

Путем присоединения к цепи ДНК праймеров — искусственно синтезированных «кусочков» ДНК (нуклеотидных пар), аналогичных ДНК микробов (инфекции) — образуются две короткие, состоящие из двух цепей участков ДНК, спирали, необходимые для синтеза будущей ДНК.

Синтез новой цепи происходит путем достраивания каждой из двух нитей ДНК. Процесс амплификации происходит с помощью специфического участка — ДНК-полимеразы, давшему название лабораторному методу. Полимераза выступает в роли катализатора реакции и следит за последовательным прикреплением нуклеотидных оснований к растущей новой цепи ДНК.

Таким образом, амплификация ДНК представляет собой многократное увеличение числа копий ДНК, которые специфичны, т. е. присущи только определенному организму. Нет необходимости достраивать всю цепь ДНК, чтобы увидеть возбудителя инфекции. Нужен только тот участок, который характерен для данной бактерии как для индивидуальности.

5360 руб.Стоимость комплексной программы у врача гастроэнтеролога

СКИДКА 25%НА ПРИЕМ ВРАЧА КАРДИОЛОГА

- 25%первичный
приём врача
терапевта по выходным

5 160 руб.вместо 5 420 руб. Обследование мужчин на урологические инфекции

АЛЛЕРГОЛОГИЯ5 120 руб. вместо 5 590 руб.

Все многочисленно повторяющиеся этапы амплификации происходят при различных температурах. Для проведения ПЦР-анализа используется специально программируемое оборудование — ПЦР — термостат или амплификатор, которое автоматически осуществляет смену температур. Амплификация проводится по заданной программе, соответствующей виду определяемой инфекции. В зависимости от программы и вида определяемой инфекции процесс автоматизированной ПЦР занимает от 2 до 3 часов.

Важное значение в ПЦР-диагностике играет квалификация врача-лаборанта, проводящего анализ, от него зависит правильность настройки ПЦР-оборудования и интерпретация полученных результатов. Врачи медицинского центра «Евромедпрестиж» имеют большой опыт в проведении ДНК-диагностики, что обеспечивает достоверность полученных результатов исследования и гарантирует положительный успех в лечении инфекционных заболеваний. Чтобы сдать анализы методом ПЦР и провести полную диагностику и лечение инфекционных заболеваний в нашем медицинском центре «Евромедпрестиж».

В процессе детекции продуктов амплификации проходит разделение полученной смеси продуктов амплификации. К смеси добавляется специальные растворы, которые наделяют фрагменты ДНК способностью флуоресцировать — отражаться оранжево-красными светящимися полосами. Образующееся свечение выдает присутствие ДНК вирусов, микробов или бактерий в забранном у пациента на ПЦР-анализ материале.

Полимеразная цепная реакция (ПЦР) – метод высокой точности в области диагностирования наследственных патологий, инфекций, вирусных болезней в любой стадии (острой или хронической), а также - на раннем этапе - до очевидных проявлений болезни путем идентификации возбудителей, на основе их ДНК, РНК, являющихся генетическим материалом, в пробах, которые получают от пациента. И сегодня мы поговорим про суть, этапы диагностики и принципы методов полимеразной цепной реакции (ПЦР), а также о ее стоимости.

Что такое полимеразная цепная реакция

Основа анализа - амплификация (удвоение) – создание множества копий из короткого участка ДНК (дезоксирибонуклеиновой кислоты), представляющей генетический комплекс человека. Для исследования нужно очень малое количество физиологического вещества (мокрота, каловые массы, соскоб эпителия, сок простаты, кровь, сперма, околоплодные воды, слизь, ткань плаценты, моча, слюна, жидкость плевральная, цереброспинальная). При этом, например, в мочеполовом тракте больного возможно обнаружение даже единичного вредоносного микроба.

Методику ПЦР (полимеразной цепной реакции) разработал американский ученый К. Мюллисом, в 1993 получивший Нобелевскую премию.

Активно используется:

  • в раннем диагностировании инфекций, генетических, ;
  • в судебно-медицинской экспертизе при наличии для исследования крайне малого количества ДНК;
  • в ветеринарной медицине, фармацевтике, биологии, молекулярной генетике;
  • для идентификации личности по ДНК, подтверждения отцовства;
  • в палеонтологии, антропологии, экологии (при отслеживании качества продуктов, факторов внешней среды).

О том, что такое полимеразная цепная реакция, расскажет в подробностях данное видео:

Кому ее назначают

Полимеразная цепная реакция в диагностике инфекционных заболеваний - одна из наиболее надежных методик особой точности и достоверности. К примеру, достоверность проведенного анализа ПЦР на хламидии и на многие другие патогены приближается к 100% (абсолютная). Чаще всего процедуру полимеразной цепной реакции назначают пациентам, у которых при диагностировании возникают сложности с идентификацией конкретного возбудителя.

Лабораторный тест ПЦР применяют:

  • для обнаружения болезнетворных организмов, вызывающих инфицирование мочевыводящих и половых органов, трудно идентифицируемых при использовании посевов или методов иммунологии;
  • для повторного диагностирования ВИЧ на начальной стадии в случае положительного, но вызывающего сомнения результата первичного анализа (например, у новорожденных от инфицированных СПИДом родителей);
  • для установления онкологического заболевания на раннем этапе (изучение мутаций онкогенов) и индивидуальной коррекции схемы лечения у конкретного пациента;
  • с целью раннего выявления и потенциального лечения наследственных патологий.

Так, будущие родители сдают анализ, чтобы узнать, являются ли они носителями генетической патологии, у детей ПЦР определяет вероятность подверженности болезни, передающейся по наследству.

  • для обнаружения патологий плода на раннем сроке вынашивания (отдельные клетки растущего эмбриона исследуют на наличие возможных мутаций);
  • у пациентов перед трансплантацией органов – для «тканевого типирования» (определения совместимости тканей);
  • для выявления опасных патогенных организмов в донорской крови;
  • у новорожденных малышей – для выявления скрытых инфекций;
  • для оценки результатов антивирусного и антимикробного лечения.

Зачем проходить такую процедуру

Поскольку ПЦР - высокоэффективный способ диагностики, дающий почти 100% результат, процедуру используют:

  • для подтверждения или исключения окончательного диагноза;
  • быстрой оценки эффективности проводимой терапии.

Во многих случаях ПЦР - единственно возможный тест для обнаружения развивающегося заболевания, если прочие бактериологические, иммунологические и вирусологические методики диагностирования оказываются бесполезными.

  • Вирусы обнаруживаются с помощью процедуры ПЦР сразу после инфицирования и до появления признаков болезни. Раннее выявление вируса позволяет оперативно назначить лечение.
  • Так называемая «вирусная нагрузка» (или - количество вирусов в организме) также определяется при анализе ДНК количественным методом.
  • Конкретные болезнетворные организмы (например, туберкулезную палочку Коха) сложно и слишком долго культивировать. Анализ ПЦР позволяет быстро выявить минимальное количество патогенов (живых и мертвых) в образцах, удобных для исследования.

Подробный анализ ДНК патогена используется:

  • чтобы определить его чувствительность к конкретным видам антибиотиков, что позволяет немедленно приступить к лечению;
  • чтобы контролировать распространение эпидемий среди домашних, диких животных;
  • чтобы выявить и отслеживать новые заразные виды микробов и подтипы патогенов, которые спровоцировали предыдущие эпидемии.

Виды диагностики

Стандартный метод

Анализ полимеразно-цепной реакции проводится на основе многократной амплификации (удвоения) конкретного фрагмента ДНК и РНК при использовании особых ферментов-праймеров. В результате цепочки копирования получается количество материала, достаточное для исследования.

В ходе процедуры копируется только искомый фрагмент (соответствующий заданным конкретным условиям) и в случае, если он действительно присутствует в пробе.

О том, как проходит ПЦР, рассказывает это подробное видео с полезными схемами:

Другие методы

  • ПЦР, проводимая в режиме реального времени . В этом виде исследования процесс выявления заданного фрагмента ДНК запускается после прохождения каждого цикла, а не после осуществления всей цепочки 30 – 40 циклов. Этот вид исследования позволяет получить информацию о количестве патогена (вируса или микроба) в организме, то есть осуществлять количественный анализ.
  • ОТ-ПЦР (режим обратной транскрипции) . Этот анализ используют, чтобы найти РНК с одной цепочкой для обнаружения вирусов, генетической базой которых является именно РНК (например, вирус гепатита С, иммунодефицита). При таком исследовании используется особый фермент - обратная транскриптаза и определенный праймер и на базе РНК строится одноцепочная ДНК. Затем из этой цепочки восстанавливают вторую цепь ДНК и выполняется стандартная процедура.

Показания для проведения

Процедура ПЦР применяется в клинике инфекционных болезней, неонатологии, акушерстве, педиатрии, урологии, гинекологии, венерологии, неврологии, нефрологии, офтальмологии.

Показания для назначения анализа:

  • выяснение риска развития генетических отклонений у ребенка при вероятности наследственных патологий;
  • диагностирование обоих родителей при планировании беременности или тяжелом состоянии матери при протекающей беременности;
  • трудности с зачатием, выявление причин бесплодия;
  • подозрение на половые инфекции в острой стадии и при симптоматике перехода их в хроническую;
  • обнаружение причин воспалительных процессов неясного происхождения;
  • незащищенные случайные и постоянные половые контакты;
  • определение чувствительности патогенного микроорганизма к конкретным антибиотикам;
  • пациентам с подозрением на скрытую инфекцию для обнаружения патогенов до развития явной симптоматики (доклиническое диагностирование);
  • больным для подтверждения выздоровления после болезни (ретроспективная диагностика);:

Также используется диагностика при необходимости точного выявления следующих возбудителей::

  • вирусы гепатита (A B C G), иммунодефицита человека, цитомегаловирус;
  • вибрион холерный;
  • вирус простого герпеса, герпетиформные виды;
  • ретро – адено – и риновирусы;
  • вирусы краснухи, Эпштейна-Барр, варицелла (Зостер – вирус);
  • парво – и пикорновирусы;
  • бактерия Helicobacter pylori;
  • легионеллы, патогенные типы палочки кишечной;
  • стафилококк золотистый;
  • возбудитель ;
  • клостридии, дифтерийная и гемофильная палочка;

Используется и для определения инфекций:

  • инфекционный мононуклеоз;
  • боррелиоз, листериоз, клещевой энцефалит;
  • кандидоз, вызываемый грибками Candida;
  • половые инфекции – трихомониаз, уреаплазмоз, бледная трепонема, гарднереллез, гонорея, микоплазмоз, хламидиоз;
  • туберкулез.

Противопоказания для проведения

Поскольку процедура проводится не с пациентом, без какого-либо воздействия на организм, а с биологическим материалом, взятым для исследования, то никаких противопоказаний для ПЦР не имеется по причине отсутствия потенциальной опасности.

Однако забор биоматериала из шеечного канала матки не проводят после процедуры кольпоскопии. Сдача мазков, соскобов на анализ разрешена только через 4 – 6 дней после окончания менструации и полного прекращения выделений.

Безопасен ли метод

Никакое негативное влияние на пациента при изолированном исследовании его биоматериала в лабораторных условиях невозможно.

Подготовка к процедуре (сдача биологических веществ на анализ)

В качестве образца для анализа ПЦР, при котором выявляют ДНК чужеродного патогена, служит любая биологическая жидкость, ткань, выделения организма. Забор исследуемого вещества проводят в виде взятия крови из вены, соскоба из гортани, полости носа, мочеиспускательного канала, плевральной полости, шейки матки.

Перед диагностической процедурой врач объясняет пациенту, забор какого материала будет взят:

  1. При обследовании на половые инфекции, производится забор выделений из половых органов, моча, мазок из уретры.
  2. При анализе на герпетические инфекции, цитомегаловирус, мононуклеоз – берут на анализ мочу, мазок из зева, на гепатит, токсоплазмоз - кровь из вены.
  3. С целью диагностирования различных видов проводится забор спинномозговой жидкости.
  4. В пульмонологии образцы для анализа - мокрота и жидкость плевральная.
  5. Когда проводят исследование возможных внутриутробных инфекций при вынашивании плода для анализа используют околоплодные воды и клетки плаценты.

Достоверность и точность анализа зависит от стерильности условий при взятии материала. Поскольку исследование ПЦР обладает высокой чувствительностью, любое загрязнение исследуемого вещества способно искажать результат.

Грамотная подготовка к сдаче биоматериала не представляет для пациентов никаких трудностей. Имеются определенные рекомендации:

  • при анализе на половые инфекции:
    • исключить интимные контакты за 72 часа до сдачи материала;
    • прекратить использование любых вагинальных средств за 3 суток;
    • с вечера предыдущего дня не проводить гигиену исследуемой области;
    • исключить мочеиспускание за 3 – 4 часа при взятии пробы из уретры;
  • прекратить прием антибиотиков за месяц до сдачи анализов на инфекции;
  • кровь сдают утром до принятия еды и питья;
  • сбор первой утренней порции мочи проводится в стерильный контейнер после тщательного интимного туалета.

О том, как проводится диагностика по методике полимеразной цепной реакции, читайте ниже.

Как проходит процедура

При выполнении исследования ПЦР раз за разом в реакторе (амплификаторе или термоциклере) повторяются определенные циклы:

  1. Первый шаг – денатурация . Слюну, кровь, биоптат, гинекологические пробы, мокроту, в которых подозревается присутствие ДНК (или РНК) патогена, помещают в амплификатор, где происходит нагревание материала и расщепление ДНК на две отдельные цепочки.
  2. Второй шаг – отжиг или небольшое охлаждение материала и добавление к нему праймеров, способных распознавать нужные участки в молекуле ДНК и связываться с ними.
  3. Третий шаг – элонгация – происходит после присоединения 2 праймеров к каждой из цепочек ДНК. В ходе процесса фрагмент ДНК патогена достраивается, и формируется его копия.

Эти циклы повторяются по типу «цепной реакции», каждый раз приводя к удвоению копий специфичного фрагмента ДНК (например, отрезка, где запрограммирован определенный вирус). За несколько часов образуется множество копий фрагмента ДНК, и выявляется их присутствие в образце. После этого проводят анализ и сравнение результатов с данными базы различных видов патогенов, чтобы определить вид инфекции.

Про расшифровку результатов и вывод исходя из ПЦР-реакции читайте ниже.

Расшифровка результатов

Окончательный результат исследования выдается через 1 – 2 суток после сдачи биологического материала. Нередко – уже в первые сутки после анализа.

Качественный анализ

  • Отрицательный результат означает, что в веществе, сданном на исследование, следов возбудителей инфекции не обнаружено.
  • Положительный результат означает выявление патогенных вирусов или бактерий в биологическом образце с очень высокой степенью точности на момент сдачи материала.

Если результат положительный, но признаков активизации инфекции не выявлено – такое состояние организма называют бессимптомным «здоровым носительством». Чаще всего наблюдается при взятии биоматериала из определенного места (цервикальный канал, уретра, полость рта) при вирусных заболеваниях. Лечения в этом случае не требуется, но обязательно постоянное врачебное наблюдение, поскольку существует вероятность:

  • распространения вируса от носителей и заражение здоровых людей;
  • активизации процесса и переход заболевания в хроническую форму.

Однако - если положительным является анализ крови, это указывает на то, что инфекция поразила организм, и это уже не состояние носительства, а патология, требующая незамедлительной специфической терапии.

Количественный анализ

Количественный результат определяет специалист конкретно для определенного вида инфекции. На его основании можно оценить степень развития, стадию болезни, что дает возможность оперативно назначить правильное лечение.

Средняя стоимость

Цены на проведение полимеразной цепной реакции определяют: вид исследования, сложность идентификации возбудителя, трудность забора биологического материала, вид анализа (качественный или количественный), уровень цен в лаборатории.

С другой стороны, при исследовании ПЦР можно определить сразу несколько патогенов при заборе одного вида материала для анализа. Это позволяет сэкономить на других лабораторных анализах.

Ориентировочно, стоимость анализа ПЦР в рублях:

  • гонококк, гарднерелла, трихомонада вагиналис – от 180
  • хламидия трахоматис – от 190
  • папилломавирус – от 380 до 500
  • биоценоз урогенитального тракта у женщин (количественная и качественная оценка микрофлоры) – от 800.

Еще больше полезной информации в отношении исследования ПЦР содержится в видеосюжете ниже:


ПРИНЦИП МЕТОДА (молекулярно-биологическая основа)

Среди большого многообразия гибридизационных методов анализа ДНК, метод ПЦР наиболее широко используется в клинической лабораторной диагностике.

Принцип метода полимеразной цепной реакции (ПЦР) (Polymerase chain reaction (PCR)) был разработан Кэри Мюллисом (фирма “Cetus”, США) в 1983г. и в настоящее время широко используется как для научных исследований, так и для диагностики в практическом здравоохранении и службе Госсанэпиднадзора (генотипирование, диагностика инфекционных заболеваний).

В основе метода ПЦР лежит природный процесс - комплементарное достраивание ДНК матрицы, осуществляемое с помощью фермента ДНК-полимеразы. Эта реакция носит название репликации ДНК.

Естественная репликация ДНК включает в себя несколько стадий:

1) Денатурация ДНК (расплетение двойной спирали, расхождение нитей ДНК);

2) Образование коротких двухцепочечных участков ДНК (затравок, необходимых для инициации синтеза ДНК);

3) Синтез новой цепи ДНК (комплементарное достраивание обеих нитей)

Данный процесс можно использовать для получения копий коротких участков ДНК, специфичных для конкретных микроорганизмов, т.е. осуществлять целенаправленный поиск таких специфических участков, что и является целью генодиагностики для выявления возбудителей инфекционных заболеваний.

Открытие термостабильной ДНК-полимеразы (Taq-полимеразы) из термофильных бактерий Thermis aquaticus , оптимум работы которой находится в области 70-72°С, позволило сделать процесс репликации ДНК циклическим и использовать его для работы in vitro. Создание программируемых термостатов (амплификаторов), которые по заданной программе осуществляют циклическую смену температур , создало предпосылки для широкого внедрения метода ПЦР в практику лабораторной клинической диагностики. При многократном повторении циклов синтеза происходит экспоненциальное увеличение числа копий специфического фрагмента ДНК, что позволяет из небольшого количества анализируемого материала, который может содержать единичные клетки микроорганизмов получить достаточное количество ДНК копий для идентификации их методом электрофореза.

Комплементарное достраивание цепи начинается не в любой точке последовательности ДНК, а только в определеннных стартовых блоках- коротких двунитевых участках. При присоединении таких блоков к специфическим участкам ДНК можно направить процесс синтеза новой цепи только в этом участке, а не по всей длине ДНК цепи. Для создания стартовых блоков в заданных участках ДНК используют две олигонуклеотидные затравки (20 нуклеотидных пар), называемые праймерами. Праймеры комплементарны последовательностям ДНК на левой и правой границах специфического фрагмента и ориентированы таким образом, что достраивание новой цепи ДНК протекает только между ними.

Таким образом, ПЦР представляет собой многократное увеличение числа копий (амплификация) специфического участка ДНК катализируемое ферментом ДНК- полимеразой.

Для проведения амплификации необходимы следующие компоненты:

Смесь дезоксинуклеотидтрифосфатов (дНТФ) (смесь четырех дНТФ, являющихся материалом для синтеза новых комплементарных цепей ДНК)

Фермент Taq-полимераза (термостабильная ДНК-полимераза, катализирующая удлиннение цепей праймеров путем последовательного присоединения нуклеотидных оснований к растущей цепи синтезируемой ДНК).

Буферный раствор
(реакционная среда, содержащая ионы Mg2+, необходимые для поддержания активности фермента)
Для определения специфических участков генома РНК-содержащих вирусов, сначала получают ДНК-копию с РНК-матрицы, используя реакцию обратной транскрипции (RT), катализируемую ферментом ревертазой (обратной транскриптазой).

Для получения достаточного количества копий искомого характеристического фрагмента ДНК амплификация включает несколько (20-40) циклов.



Каждый цикл амплификации включает 3 этапа, протекающих в различных температурных режимах

1 этап: Денатурация ДНК (расплетение двойной спирали). Протекает при 93-95°C в течение 30-40 сек.

2 этап: Присоединение праймеров (отжиг). Присоединение праймеров происходит комплементарно к соответствующим последовательностям на противоположных цепях ДНК на границах специфического участка. Для каждой пары праймеров существет своя температура отжига, значения которой располагаются в интервале 50-65°С. Время отжига -20-60 сек.

3 этап: Достраивание цепей ДНК. Комплементарное достраивание цепей ДНК происходит от 5’-конца к 3’-концу цепи в противоположных направлениях, начиная с участков присоединения праймеров. Материалом для синтеза новых цепей ДНК служат добавляемые в раствор дезоксирибонуклеотидтрифосфаты (дНТФ). Процесс синтеза катализируется ферментом термостабильной ДНК-полимеразой (Taq-полимеразой) и проходит при температуре 70-72°С. Время протекания синтеза - 20-40 сек.






Образовавшиеся в первом цикле амплификации новые цепи ДНК служат матрицами для второго цикла амплификации, в котором происходит образование искомого специфического фрагмента ДНК (ампликона). (см.рис.2). В последующих циклах амплификации ампликоны служат матрицей для синтеза новых цепей. Таким образом происходит накопление ампликонов в растворе по формуле 2n, где n-число циклов амлификации. Поэтому, даже если в исходном растворе первоначально находилась только одна двухцепочечная молекула ДНК, то за 30-40 циклов в растворе накапливается около 108 молекул ампликона. Этого количества достаточно для достоверной визуальной детекции этого фрагмента методом электрофореза в агарозном геле. Процесс амплификации проводится в специальном программируемом термостате (амплификаторе), который по заданной программе автоматчески осуществляет смену температур согласно числу циклов амплификации.

СТАДИИ ПРОВЕДЕНИЯ ПЦР - АНАЛИЗА


В основе метода ПЦР, как инструмента лабораторной диагностики инфекционных заболеваний лежит обнаружение небольшого фрагмента ДНК возбудителя (несколько сот пар оснований), специфичного только для данного микроорганизма, с использованием полимеразной цепной реакции для накопления искомого фрагмента.
Методика проведения анализа с использованием метода ПЦР включает три этапа:

1. Выделение ДНК (РНК) из клинического образца


2. Амплификация специфических фрагментов ДНК
3. Детекция продуктов амплификации

Выделение ДНК (РНК)
На данной стадии проведения анализа клиническая проба подвергается специальной обработке, в результате которой происходит лизис клеточного материала, удаление белковых и полисахаридных фракций , и получение раствора ДНК или РНК, свободной от
ингибиторов и готовой для дальнейшей амплификации.
Выбор методики выделения ДНК(РНК) в основном определяется характером обрабатываемого клинического материала.

Амплификация специфических фрагментов ДНК
На данной стадии происходит накопление коротких специфических фрагментов ДНК в количестве, необходимом для их дальнейшей детекции. В большинстве методик определения специфических фрагментов генома используется т.н. “классический вариант направленной ПЦР. Для повышения специфичности и чувствительности анализа в некоторых методиках используется метод “гнездной” (nested) ПЦР, в котором используются 2 пары праймеров (“внешние” - для 1 стадии, и “внутренние” - для 2-ой стадии).

Детекция продуктов амплификации
В большинстве методик на данном этапе проводится разделение смеси продуктов амплификации, полученной на 2-ой стадии, методом горизонтального электрофореза в агарозном геле. До проведения электрофоретического разделения, к амплификационной смеси добавляется раствор бромистого этидия, образущий с двухцепочечными фрагментами ДНК прочные соединения внедрения. Эти соединения под действием УФ-облучения способны флуоресцировать, что регистрируется в виде оранжево-красных светящихся полос после электрофоретического разделения амплификационной смеси в агарозном геле.

В качестве альтернативы электрофоретическому методу детекции, имеющему некоторые недостатки: субъективность чтения результатов, ограничения по определению ДНК различных микроорганизмов в одной реакции, могут быть предложены гибридизационные схемы детекции. В этих схемах образующийся в результате амплификации фрагмент ДНК гибридизуется (образует 2-х цепочечные комплексы - "гибриды") со специфическим олигонуклеотидным зондом. Регистрация таких комплексов может быть проведена колориметрически или флуориметрически. В НПФ "Литех" созданы наборы для детекции на основе гибридизации с флуориметрической регистрацией результатов

ПРЕИМУЩЕСТВА МЕТОДА ПЦР как метода диагностики инфекционных заболеваний:

- Прямое определение наличия возбудителей

Многие традиционные методы диагностики, например иммуноферментный анализ, выявляют белки-маркеры, являющиеся прдуктами жизнедеятельности инфекционных агентов, что дает лишь опосредованное свидетельство наличия инфекции. Выявление специфического участка ДНК возбудителя методом ПЦР дает прямое указание на присутствие возбудителя инфекции.



- Высокая специфичность

Высокая специфичность метода ПЦР обусловлена тем, что в исследуемом материале выявляется уникальный, характерный только для данного возбудителя фрагмент ДНК. Специфичность задается нуклеотидной последовательностью праймеров, что исключает
возможность получения ложных результатов, в отличие от метода иммуноферментного анализа, где нередки ошибки в связи с перекрестно-реагирующими антигенами.

- Высокая чувствительность

Метод ПЦР позволяет выявлять даже единичные клетки бактерий или вирусов. ПЦР-диагностика обнаруживает наличие возбудителей инфекционных заболеваний в тех случаях, когда другими методами (иммунологическими, бактериологическими,
микроскопическими) это сделать невозможно. Чувствительность ПЦР-анализа составляет 10-1000 клеток в пробе (чувствительность иммунологических и микроскопических тестов - 103-105 клеток).

-Универсальность процедуры выявления различных возбудителей

Материалом для исследования методом ПЦР служит ДНК возбудителя. Метод основан на выявлении фрагмента ДНК или РНК, являющегося специфичным для конкретного организма. Сходство химического состава всех нуклеиновых кислот позволяет применять унифицированные методы проведения лабораторных исследований. Это дает возможность диагносцировать несколько возбудителей из одной биопробы. В качестве исследуемого материала могут использоваться различные биологические выделения (слизь, моча, мокрота), соскобы эпителиальных клеток, кровь, сыворотка.

- Высокая скорость полученоя результата анализа
Для проведения ПЦР-анализа не требуется выделение и выращивание культуры возбудителя, что занимает большое количество времени. Унифицированный метод обработки биоматериала и детекции продуктов реакции, и автоматизация процесса амплификации дают возможность провести полный анализ за 4-4.5 часа.

Следует отметить, что методом ПЦР возможно выявление возбудителей не только в клиническом материале, полученном от больного, но и в материале, получаемом из объектов внешней среды (вода, почва и т.д.)

ПРИМЕНЕНИЕ МЕТОДА ПЦР В ПРАКТИЧЕСКОМ ЗДРАВООХРАНЕНИИ

Использование метода ПЦР для диагностики инфекционных заболеваний как бактериальной, так и вирусной природы имеет колоссальное значение для решения многих проблем микробиологии и эпидемиологии. Применение этого метода также способствует развитию фундаментальных исследований в области изучения хронических и малоизученных инфекционных заболеваний.

Наиболее эффективно и экономически обоснованно использование метода в:

урогинекологической практике - для выявления хламидиоза, уреаплазмоза, гонореи, герпеса, гарднереллеза, микоплазменной инфекции;

в пульмонологии - для дифференциальной диагностики вирусных и бактериальных пневмоний, туберкулеза;

в гастроэнтерологии - для выявления геликобактериоза;

в клинике инфекционных заболеваний - в качестве экспресс-метода диагностики сальмонеллеза, дифтерии, вирусных гепатитов В,С и G;

в гематологии - для выявления цитомегаловирусной инфекции, онковирусов.

Федеральное агентство по образованию

Государственное образовательное учреждение

Высшего профессионального образования

"Карельская государственная педагогическая академия"


Курсовая работа на тему:

Полимеразная цепная реакция (ПЦР) и её применение


Выполнила: студентка Корягина Валерия Александровна

Проверила: Карпикова Наталья Михайловна


Петрозаводск 2013


Введение

Глава 1. Литературный обзор

1.5.4 Эффект "Плато"

1.5.6 Амплификация

Заключение


Введение


Последнее двадцатилетие ознаменовалось широким внедрением в биологические, медицинские и сельскохозяйственные науки молекулярно-генетических методов.

К началу 70-х годов казалось, что молекулярная биология достигла определенной степени завершенности. В этот период главным объектом молекулярно-генетических исследований были микроорганизмы. Переход к эукариотам поставил перед исследователями совершенно новые проблемы, которые не могли быть решены с использованием существовавших в то время методов генетического анализа. Прорыв в развитии молекулярной генетики стал возможен благодаря появлению нового экспериментального инструмента - рестрикационных эндонуклеаз. В последующие годы количество методов непосредственного анализа ДНК, основанных на качественно различающихся подходах, начало стремительно увеличиваться.

Современные технологии во многих случаях позволили на более глубоком уровне начать изучение тонкой структурно-функциональной организации ядерных и внеядерных геномов различных организмов. Особое значение это имело для разработки новых методов диагностики и лечения различных заболеваний. Не менее важным оказалась возможность использования достижения молекулярной генетики в популяционной биологии и в селекции для выявления и анализа генетической изменчивости популяций, сортов и штаммов, идентификации и паспортизации хозяйственно ценных особей, создания генетически модифицированных организмов и для решения других вопросов.

Каждый метод имеет свои преимущества и недостатки. Нет универсального метода, который мог бы позволить решить все возникающие проблемы. Поэтому выбор конкретного метода для проводимого исследования является одним из важнейших этапов любой научной работы.

Глава 1. Литературный обзор


1.1 История открытия Полимеразной цепной реакции (ПЦР)


В 1983 г. К.Б. Мюллис и др. опубликовали и запатентовали метод полимеразной цепной реакции (ПЦР), которому суждено было оказать глубочайшее влияние на все области исследования и прикладного использования нуклеиновых кислот. Значение этого метода для молекулярной биологии и генетики оказалось столь велико и очевидно, что уже через семь лет автору была присуждена Нобелевская премия по химии.

В начале использования метода после каждого цикла нагревания-охлаждения приходилось добавлять в реакционную смесь ДНК-полимеразу, так как она инактивировалась при высокой температуре, необходимой для разделения цепей спирали ДНК. Процедура проведения реакции была сравнительно неэффективной, требовала много времени и фермента. В 1986 году метод полимеразной цепной реакции был существенно улучшен. Было предложено использовать ДНК-полимеразы из термофильных бактерий. Эти ферменты оказались термостабильными и были способны выдерживать множество циклов реакции. Их использование позволило упростить и автоматизировать проведение ПЦР. Одна из первых термостабильных ДНК-полимераз была выделена из бактерий Thermus aquaticus и названа Taq -полимеразой.

Возможность амплификации любого сегмента ДНК, последовательность нуклеотидов которого известна, и получение его по завершении ПЦР в гомогенном виде и препаративном количестве делают ПЦР альтернативным методом молекулярного клонирования коротких фрагментов ДНК. При этом не возникает необходимости в применении сложных методических приемов, которые используют в генной инженерии при обычном клонировании. Разработка метода ПЦР во многом расширила методические возможности молекулярной генетики, и, в частности, генной инженерии, причем настолько, что это кардинально изменило и усилило научный потенциал многих её направлений.


1.2 Разновидности полимеразной цепной реакции (ПЦР)


·Вложенная ПЦР - применяется для уменьшения числа побочных продуктов реакции. Используют две пары праймеров и проводят две последовательные реакции. Вторая пара праймеров амплифицирует участок ДНК внутри продукта первой реакции.

·Инвертированная ПЦР - используется в том случае, если известен лишь небольшой участок внутри нужной последовательности. Этот метод особенно полезен, когда нужно определить соседние последовательности после вставки ДНК в геном. Для осуществления инвертированной ПЦР проводят ряд разрезаний ДНК - рестриктазами <#"justify">полимеразная цепная реакция праймер

·Групп-специфическая ПЦР - ПЦР для родственных <#"center">1.3 Полимеразная цепная реакция


Открытая в середине 80-х годов, полимеразная цепная реакция (ПЦР) способна увеличить количество копий исходной пробы в миллионы раз в течение нескольких часов. В ходе каждого цикла реакции из исходной молекулы образуются две копии. Каждая из синтезированных копий ДНК может служить матрицей для синтеза новых копий ДНК в следующем цикле. Таким образом, многократное повторение циклов, приводит к возрастанию количества копий в геометрической прогрессии. Из расчетов следует, что даже при наличии 30 циклов, число копий исходной молекулы составит более 1 миллиарда. Даже если учесть, что в ходе каждого цикла дуплицируются не все ампликоны, то общее количество копий, несмотря на это, составляет достаточно большую цифру.

Каждый цикл полимеразной цепной реакции (ПЦР) состоит из следующих этапов:

·Денатурация - Повышение температуры вызывает раскручивание и расщепление двухцепочечной молекулы ДНК на две одноцепочечные;

·Отжиг - Снижение температуры позволяет праймерам присоединиться к комплементарным участкам молекулы ДНК;

·Элонгация - Фермент ДНК-полимераза достраивает комплементарную цепь.

Для амплификации избранного фрагмента используют два олигонуклеотидных праймера (затравки), фланкирующих определенный участок ДНК. Праймеры ориентированы 3-концами навстречу друг другу и в сторону той последовательности, которую необходимо амплифицировать. ДНК-полимераза осуществляет синтез (достройку) взаимно комплементарных цепей ДНК, начиная с праймеров. При синтезе ДНК праймеры физически встраиваются в цепь новосинтезирующихся молекул ДНК. Каждая цепь молекулы ДНК, образующаяся с помощью одного из праймеров, может служить матрицей для синтеза комплементарной цепи ДНК с помощью другого праймера.


1.4 Проведение полимеразной цепной реакции (ПЦР)


Полимеразную цепную реакцию проводят в специальных тонкостенных полипропиленовых пробирках, совместимых по размеру с используемым термоциклером (амплификатором) - прибором, который контролирует температурные и временные характеристики этапов полимеразной цепной реакции (ПЦР).


1.5 Принцип метода полимеразной цепной реакции


Полимеразная цепная реакция (ПЦР) - метод амплификации ДНК in vitro, с помощью которого в течение нескольких часов можно выделить и размножить определённую последовательность ДНК в миллиарды раз. Возможность получения огромного количества копий одного строго определённого участка генома значительно упрощает исследование имеющегося образца ДНК.

Для проведения полимеразной цепной реакции необходимо соблюдение ряда условий:


1.5.1 Наличие в реакционной смеси ряда компонентов

Основными компонентами реакционной (ПЦР) смеси являются: Трис-HCl, KCl, MgCl2, смесь нуклеотидтрифосфатов (АТФ, ГТФ, ЦТФ, ТТФ), праймеры (олигонуклеотиды), препарат анализируемой ДНК, термостабильная ДНК-полимераза. Каждый из компонентов реакционной смеси непосредственно участвует в полимеразной цепной реакции (ПЦР), а концентрация реагентов напрямую влияет на ход амплификации.

·Трис-HCl - определяет pH реакционной смеси, создает буферную емкость. Активность ДНК-полимеразы зависит от pH среды, поэтому значение водородного показателя напрямую влияет на ход полимеразной цепной реакции. Обычно значение pH находится в пределах 8 - 9,5. Высокое значение pH берется из-за того, что при повышении температуры pH Трил-HCl буфера падает.

·KCl - концентрация хлорида калия до 50 мМ влияет на протекание процессов денатурации и отжига, концентрация свыше 50 мМ ингибирует ДНК-полимеразу.

·MgCl2 - поскольку ДНК-полимераза является Mg2+ - зависимым ферментом, то концентрация ионов магния влияет на активность фермента (Mg2+ образует комплексы с НТФ - именно эти комплексы являются субстратом для полимеразы). Высокая концентрация приводит к увеличению неспецифической амплификации, а низкая ведет - к ингибированию реакции, оптимум (для различных полимераз) находится в области 0,5 - 5мМ. Кроме того, концентрация солей магния влияет на протекание процессов денатурации и отжига - повышение концентрации Mg2+ вызывает повышение температуры плавления ДНК (т.е. температуры, при корой 50% двухцепочечных нитей ДНК разъединяются на одноцепочечные).

·НТФ - нуклеотидтрифосфаты являются непосредственными мономерами нуклеиновых кислот. Для предотвращения цепной терминации рекомендуется равноколличественное соотношение всех четырех нуклеотидтрифосфатов. Низкая концентрация данных компонентов в реакционной смеси увеличивает вероятность ошибки при построении комплементарной цепи ДНК.

·Праймеры - Наиболее оптимальным является использование праймеров с разницей температур плавления не более 2 - 4oС. Иногда при длительном хранении при температуре 4oС, или после большого количества замораживаний - оттаиваний праймеры образуют вторичные структуры - димеры, снижая эффективность протекания ПЦР. Устранение данной проблемы сводится к инкубации на водяной бане (Т=95oС) в течение 3 минут и последующему резкому охлаждению до 0oС.

·Препараты ДНК - количество и качество препарата ДНК (матрицы) непосредственно влияет на ход и параметры полимеразной цепной реакции. Избыточное количество образца ДНК ингибирует полимеразную цепную реакцию (ПЦР). Примеси различных веществ, находящихся в препарате ДНК, могут также уменьшить эффективность протекания полимеразной цепной реакции (ПЦР): ацетат натрия, хлорид натрия, изопропанол, этанол, гепарин, фенол, мочевина, гемоглобин и др.

·ДНК-полимераза - при использовании малого количества ДНК-полимеразы наблюдается уменьшение синтеза конечного продукта прямо пропорционально размеру фрагментов. Избыток полимеразы в 2 - 4 раза приводит к появлению диффузных спектров, а в 4 - 16 раз - низкомолекулярных неспецифических спектров. Диапазон используемых концентраций - 0,5 - 1,5 единиц активности в перерасчете на 25 мкл ПЦР смеси.

Кроме основных компонентов ПЦР смеси, используют ряд дополнительных веществ, улучшающих качественные и количественные показатели ПЦР: ацетамид (5%) - увеличение растворимости основных компонентов; бетаин (натриевая соль) - стабилизация ДНК-полимеразы, понижение температуры плавления ДНК, выравнивание температуры плавления; альбумин бычий (10-100 мкг/мл) - стабилизация ДНК-полимеразы; диметилсульфоксид (1-10%) - повышение растворимости основных компонентов; формамид (2-10%) - увеличение специфичности отжига; глицерин (15-20%) - увеличение термостабильности фермента, понижение температуры денатурации образца ДНК; сульфат аммония - снижение температуры денатурации и отжига.


1.5.2 Циклический и температурный режим

Общий вид программы полимеразной цепной реакции (ПЦР) следующий:

этап. Длительная первичная денатурация препарата ДНК.1 цикл

этап. Быстрая денатурация препарата ДНК. Отжиг праймеров. Элонгация.30 - 45 циклов.

этап. Длительная элонгация. Охлаждение реакционной смеси.1 цикл.

Каждый элемент этапа - денатурация, отжиг, элонгация - имеет индивидуальные температурные и временные характеристики. Параметры температуры и времени протекания каждого элемента подбирают эмпирически, в соответствии с качественными и количественными показателями продуктов амплификации.

Денатурация. В ходе данного элемента полимеразной цепной реакции происходит расщепление двухцепочечной молекулы ДНК на две одноцепочечные. Температурные параметры денатурации находятся в области 90 - 95oС, но в случае ДНК-образца с большим содержанием гуанина и цитозина, температура должна быть увеличена до 98oС. Температура денатурации должна быть достаточной для полной денатурации - расщепления нитей ДНК и избежания "внезапного охлаждения" или быстрого отжига, однако, термостабильная ДНК-полимераза менее устойчива при высоких температурах. Таким образом, подбор оптимальных температурных параметров денатурации для соотношения праймер/образец (препарат ДНК) является важным условием при проведении амплификации. Если температура денатурации на первом этапе выше 95oС, рекомендуется добавлять ДНК-полимеразу в реакционную смесь после первичной денатурации. Продолжительность данного элемента этапа в ходе полимеразной цепной реакции (ПЦР) должна быть достаточной для полной денатурации ДНК, но в то же время не оказывать существенного влияния на активность ДНК-полимеразы при данной температуре.

Отжиг. Температура отжига (Та) - один из важнейших параметров полимеразной цепной реакции. Температура отжига для каждого конкретного праймера подбирается индивидуально. Она зависит от длинны и нуклеотидного состава праймера. Обычно она ниже на 2 - 4oС значения температуры плавления (Тm) праймера. Если температура отжига системы ниже оптимальной, то число неспецифических амплифицированных фрагментов возрастает и, наоборот, более высокая температура уменьшает количество амплифицированных продуктов. При этом концентрация специфических ампликонов может резко снижаться, вплоть до ингибирования полимеразной цепной реакции (ПЦР). Увеличение времени отжига также приводит к увеличению количества неспецифических ампликонов.

Элонгация. Обычно каждый вид термостабильной ДНК-полимеразы имеет индивидуальный температурный оптимум активности. Скорость синтеза ферментом комплементарной нити ДНК также является величиной специфичной для каждой полимеразы (в среднем она составляет 30 - 60 нуклеотидов в секунду, или 1 - 2 тыс. оснований в минуту), поэтому время элонгации подбирается в зависимости от типа ДНК-полимеразы и длинны амплифицируемого региона.


1.5.3 Основные принципы подбора праймеров

При создании ПЦР-тест-системы одной из основных задач является правильный подбор праймеров, которые должны отвечать ряду критериев:

Праймеры должны быть специфичны. Особое внимание уделяют 3-концам праймеров, т. к именно с них начинает достраивать комплементарную цепь ДНК Taq-полимераза. Если их специфичность недостаточна, то, вероятно, что в пробирке с реакционной смесью будут происходить нежелательные процессы, а именно, синтез неспецифической ДНК (коротких или длинных фрагментов). Она видна на электрофорезе в виде тяжелых или легких дополнительных полос. Это мешает оценке результатов реакции, т. к легко перепутать специфический продукт амплификации с синтезированной посторонней ДНК. Часть праймеров и дНТФ расходуется на синтез неспецифической ДНК, что приводит к значительной потере чувствительности.

Праймеры не должны образовывать димеры и петли, т.е. не должно образовываться устойчивых двойных цепей в результате отжига праймеров самих на себя или друг с другом.


1.5.4 Эффект "Плато"

Следует заметить, что процесс накопления специфических продуктов амплификации по геометрической прогрессии идет лишь ограниченное время, а затем его эффективность критически падает. Это связано с так называемым эффектом "плато".

Термин эффект плато используют для описания процесса накопления продуктов ПЦР на последних циклах амплификации.

В зависимости от условий и количества циклов реакции амплификации, на момент достижения эффекта плато влияют утилизация субстратов (дНТФ и праймеров), стабильность реактантов (дНТФ и фермента), количество ингибиторов, включая пирофосфаты и ДНК-дуплексы, конкуренция за реактанты неспецифическими продуктами или праймер-димерами, концентрация специфического продукта и неполная денатурация при высокой концентрации продуктов амплификации.

Чем меньше начальная концентрация ДНК-мишени, тем выше риск выхода реакции на плато". Этот момент может наступить до того, как количество специфических продуктов амплификации будет достаточно, чтобы их можно было проанализировать. Избежать этого позволяют лишь хорошо оптимизированные тест-системы.


1.5.5 Подготовка пробы биологического материала

Для выделения ДНК используют различные методики в зависимости от поставленных задач. Их суть заключается в экстракции (извлечении) ДНК из биопрепарата и удалении или нейтрализации посторонних примесей для получения препарата ДНК с чистотой, пригодной для постановки ПЦР.

Стандартной и ставшей уже классической считается методика получения чистого препарата ДНК, описанная Мармуром. Она включает в себя ферментативный протеолиз с последующей депротеинизацией и переосаждением ДНК спиртом. Этот метод позволяет получить чистый препарат ДНК. Однако он довольно трудоемок и предполагает работу с такими агрессивными и имеющими резкий запах веществами, как фенол и хлороформ.

Одним из популярных в настоящее время является метод выделения ДНК, предложенный Boom с соавторами. Этот метод основан на использовании для лизиса клеток сильного хаотропного агента - гуанидина тиоционата (GuSCN), и последующей сорбции ДНК на носителе (стеклянные бусы, диатомовая земля, стеклянное "молоко" и. т.д.). После отмывок в пробе остается ДНК, сорбированная на носителе, с которого она легко снимается с помощью элюирующего буфера. Метод удобен, технологичен и пригоден для подготовки образца к амплификации. Однако возможны потери ДНК вследствие необратимой сорбции на носителе, а также в процессе многочисленных отмывок. Особенно большое значение это имеет при работе с небольшими количествами ДНК в образце. Кроме того, даже следовые количества GuSCN могут ингибировать ПЦР. Поэтому при использовании этого метода очень важен правильный выбор сорбента и тщательное соблюдение технологических нюансов.

Другая группа методов пробоподготовки основана на использовании ионообменников типа Chilex, которые, в отличие от стекла, сорбируют не ДНК, а наоборот, примеси, мешающие реакции. Как правило, эта технология включает две стадии: кипячение образца и сорбция примесей на ионообменнике. Метод чрезвычайно привлекателен простотой исполнения. В большинстве случаев он пригоден для работы с клиническим материалом. К сожалению, иногда встречаются образцы с такими примесями, которые невозможно удалить с помощью ионообменников. Кроме того, некоторые микроорганизмы не поддаются разрушению простым кипячением. В этих случаях необходимо введение дополнительных стадий обработки образца.

Таким образом, к выбору метода пробоподготовки следует относиться с пониманием целей проведения предполагаемых анализов.


1.5.6 Амплификация

Для проведения реакции амплификации необходимо приготовить реакционную смесь и внести в нее анализируемый образец ДНК. При этом важно учитывать некоторые особенности отжига праймеров. Дело в том, что, как правило, в анализируемом биологическом образце присутствуют разнообразные молекулы ДНК, к которым используемые в реакции праймеры имеют частичную, а в некоторых случаях значительную, гомологию. Кроме того, праймеры могут отжигаться друг с другом, образуя праймер-димеры. И то, и другое приводит к значительному расходу праймеров на синтез побочных (неспецифических) продуктов реакции и, как следствие, значительно уменьшает чувствительность системы. Это затрудняет или делает невозможным чтение результатов реакции при проведении электрофореза.


1.6 Состав стандартной реакционной ПЦР смеси


х ПЦР буфер (100 мМ р-р Трис-HCl, pH 9,0, 500 мМ р-р KCl, 25 мМ р-р MgCl2) …….2,5 мкл

Вода (MilliQ) ……………………………………………………….18,8 мкл

Смесь нуклеотидтрифосфатов (дНТФ)

мМ р-р каждого……………………………………….……….0,5 мкл

Праймер 1 (10 мМ р-р) ………………………………………….….1 мкл

Праймер 2 (10 мМ р-р) ………………………………………….….1 мкл

ДНК-полимераза (5 ед. /мкл) ………………………………………0,2 мкл

Образец ДНК (20 нг/мкл) …………………………………………..1 мкл


1.7 Оценка результатов реакции


Для правильной оценки результатов ПЦР важно понимать, что данный метод не является количественным. Теоретически продукты амплификации единичных молекул ДНК-мишени могут быть обнаружены с помощью электрофореза уже после 30-35 циклов. Однако на практике это выполняется лишь в случаях, когда реакция проходит в условиях, близких к идеальным, что в жизни встречается не часто. Особенно большое влияние на эффективность амплификации оказывает степень чистоты препарата ДНК, т.е. наличие в реакционной смеси тех или иных ингибиторов, от которых избавиться в некоторых случаях бывает крайне сложно. Иногда, из-за их присутствия не удается амплифицировать даже десятки тысяч молекул ДНК-мишени. Таким образом, прямая связь между исходным количеством ДНК-мишени и конечным количеством продуктов амплификации часто отсутствует.

Глава 2: Применение Полимеразной цепной реакции


ПЦР используется во многих областях для проведения анализов и в научных экспериментах.

Криминалистика

ПЦР используют для сравнения так называемых "генетических отпечатков пальцев". Необходим образец генетического материала с места преступления - кровь, слюна, сперма, волосы и т.п. Его сравнивают с генетическим материалом подозреваемого. Достаточно совсем малого количества ДНК, теоретически - одной копии. ДНК расщепляют на фрагменты, затем амплифицируют с помощью ПЦР. Фрагменты разделяют с помощью электрофореза ДНК. Полученную картину расположения полос ДНК и называют генетическим отпечатком пальцев.

Установление отцовства

Результаты электрофореза ДНК-фрагментов, амплифицированных с помощью ПЦР. Отец. Ребенок. Мать. Ребенок унаследовал некоторые особенности генетического отпечатка обоих родителей, что дало новый, уникальный отпечаток.

Хотя "генетические отпечатки пальцев" уникальны, родственные связи все же можно установить, сделав несколько таких отпечатков. Тот же метод можно применить, слегка модифицировав его, для установления эволюционного родства среди организмов.

Медицинская диагностика

ПЦР дает возможность существенно ускорить и облегчить диагностику наследственных и вирусных заболеваний. Нужный ген амплифицируют с помощью ПЦР с использованием соответствующих праймеров, а затем секвенируют для определения мутаций. Вирусные инфекции можно обнаруживать сразу после заражения, за недели или месяцы до того, как проявятся симптомы заболевания.

Персонализированная медицина

Иногда лекарства оказываются токсичными или аллергенными для некоторых пациентов. Причины этого - отчасти в индивидуальных различиях в восприимчивости и метаболизме лекарств и их производных. Эти различия детерминируются на генетическом уровне. Например, у одного пациента определенный цитохром может быть более активен, у другого - менее. Для того, чтобы определить, какой разновидностью цитохрома обладает данный пациент, предложено проводить ПЦР-анализ перед применением лекарства. Такой анализ называют предварительным генотипированием.

Клонирование генов

Клонирование генов - это процесс выделения генов и, в результате генноинженерных манипуляций, получения большого количества продукта данного гена. ПЦР используется для того, чтобы амплифицировать ген, который затем вставляется в вектор - фрагмент ДНК, переносящий чужеродный ген в тот же самый или другой, удобный для выращивания, организм. В качестве векторов используют, например, плазмиды или вирусную ДНК. Вставку генов в чужеродный организм обычно используют для получения продукта этого гена - РНК или, чаще всего, белка. Таким образом в промышленных количествах получают многие белки для использования в сельском хозяйстве, медицине и др.

Секвенирование ДНК

В методе секвенирования с использованием меченых флуоресцентной меткой или радиоактивным изотопом дидезоксинуклеотидов ПЦР является неотъемлемой частью, так как именно в ходе полимеризации в цепь ДНК встраиваются производные нуклеотидов, меченые флуоресцентной или радиоактивной меткой. Это останавливает реакцию, позволяя определить положения специфических нуклеотидов после разделения синтезированных цепочек в геле.

Мутагенез

В настоящее время ПЦР стала основным методом проведения мутагенеза. Использование ПЦР позволило упростить и ускорить процедуру проведения мутагенеза, а также сделать её более надёжной и воспроизводимой.

Метод ПЦР позволил проанализировать наличие последовательностей вирусов папилломы человека в срезах биопсий новообразований шейки матки человека, залитых парафином за 40 лет до данного исследования. Более того, с помощью ПЦР удалось амплифицировать, и клонировать фрагменты митохондриальной ДНК из ископаемых останков мозга человека возраста 7 тысяч лет!

На лизатах индивидуальных сперматозоидов человека продемонстрирована возможность одновременно анализировать два локуса, расположенных на разных негомологичных хромосомах. Такой подход обеспечивает уникальную возможность тонкого генетического анализа и изучения хромосомной рекомбинации, ДНК-полиморфизма и др. Метод анализа индивидуальных сперматозоидов сразу нашел практическое применение в судебной медицине, так как HLA-типирование гаплоидных клеток позволяет определять отцовство или выявлять преступника (комплекс HLA представляет собой набор генов главного комплекса гистосовместимости человека; локусы комплекса HLA - наиболее полиморфные из всех известных у высших позвоночных: в пределах вида в каждом локусе существует необычайно большое число разных аллелей - альтернативных форм одного и того же гена).

Используя ПЦР, можно выявлять правильность интеграции чужеродных генетических структур в заранее определенный район генома изучаемых клеток. Суммарная клеточная ДНК отжигается с двумя олигонуклеотидными затравками, одна из которых комплементарна участку хозяйской ДНК вблизи точки встраивания, а другая - последовательности интегрированного фрагмента в антипараллельной цепи ДНК. Полимеразная цепная реакция в случае неизмененной структуры хромосомной ДНК в предполагаемом месте встройки приводит к образованию фрагментов одноцепочечной ДНК неопределенного размера, а в случае запланированной встройки - двухцепочечных фрагментов ДНК известного размера, определяемого расстоянием между местами отжига двух праймеров. Причем степень амплификации анализируемого района генома в первом случае будет находиться в линейной зависимости от количества циклов, а во втором - в экспоненциальной. Экспоненциальное накопление в процессе ПЦР амплифицируемого фрагмента заранее известного размера позволяет визуально наблюдать его после электрофоретического фракционирования препарата ДНК и делать однозначное заключение о встройке чужеродной последовательности в заданный район хромосомной ДНК.

Заключение


Самое широкое распространение метод ПЦР в настоящее время получил как метод диагностики различных инфекционных заболеваний. ПЦР позволяет выявить этиологию инфекции даже если в пробе, взятой на анализ, содержится всего несколько молекул ДНК возбудителя. ПЦР широко используется в ранней диагностики ВИЧ-инфекций, вирусных гепатитов и т.д. На сегодняшний день почти нет инфекционного агента, которого нельзя было бы выявить с помощью ПЦР.

Список использованной литературы


1.Падутов В.Е., Баранов О.Ю., Воропаев Е.В. Методы молекулярно - генетического анализа. - Мн.: Юнипол, 2007. - 176 с.

2.ПЦР "в реальном времени"/ Ребриков Д.В., Саматов Г.А., Трофимов Д.Ю. и др.; под ред. д. б. н. Д.В. Ребрикова; предисл. Л.А. Остермана и акад. РАН и РАСХН Е.Д. Свердлова; 2-е изд., испр. и доп. - М.: БИНОМ. Лаборатория знаний, 2009. - 223 с.

.Патрушев Л.И. Искусственные генетические системы. - М.: Наука, 2005. - В 2 т

.Б. Глик, Дж. Пастернак Молекулярная биотехнология. Принципы и применение 589 стр., 2002 г.

5.Щелкунов С.Н. Генетическая инженерия. - Новосибирск: Сиб. унив. издательствово, 2004. - 496 с.

Под редакцией А.А. Ворбьева "Полимеразная цепная реакция и ее применение для диагностики в дерматовенерологии"; Медицинское информационное агентство - 72 стр.

Http://ru. wikipedia.org

Http://scholar. google.ru

.

.

Http://www.med2000.ru/n1/n12. htm

12.http://prizvanie. su/ - медицинский журнал


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Полимеразная цепная реакция (ПЦР)

Суть метода ПЦР. ДНК-полимераза

Полимеразная цепная реакция - экспериментальный метод молекулярной биологии, позволяющий добиться значительного увеличения малых концентраций определенных фрагментов нуклеиновой кислоты в биологическом материале. Такой процесс увеличения числа копий ДНК называется амплификацией . Копирование ДНК при ПЦР осуществляется специальным ферментом - полимеразой. ДНК-полимераза(Рис. 3) - фермент, участвующий в репликации (амплификации ДНК в живых организмах) ДНК. Ферменты этого класса катализируют полимеризацию дезоксирибонуклеотидов вдоль цепочки нуклеотидов ДНК, которую фермент "читает" и использует в качестве шаблона. Тип нового нуклеотида определяется по принципу комплементарности с шаблоном, с которого ведется считывание.

ДНК-полимераза добавляет свободные нуклеотиды к 3"-концу собираемой цепочки. Это приводит к удлинению цепочки в направлении 5"-3". Ни одна из известных ДНК-полимераз не способна создать цепочку "с нуля": они в состоянии лишь добавлять нуклеотиды к уже существующей 3"-гидроксильной группе. По этой причине ДНК-полимераза нуждается в праймере - короткой последовательности нуклеотидов (чаще 20-25), комплементарной концевым участкам изучаемого гена - к которому она могла бы добавить первый нуклеотид. Праймеры состоят всегда из оснований ДНК и РНК, при этом первые два основания всегда РНК-основания. Праймеры синтезируются другим ферментом - праймазой . Еще один фермент - геликаза - необходим для раскручивания двойной спирали ДНК с формированием одноцепочечной структуры, которая обеспечивает репликацию обеих цепочек в соответствии с полуконсервативной моделью репликации ДНК.

Некоторые ДНК-полимеразы обладают также способностью исправлять ошибки во вновь собираемой цепочке ДНК. Если происходит обнаружение неправильной пары нуклеотидов, ДНК-полимераза откатывается на один шаг назад, исключает из неправильный нуклеотид из цепочки, затем вставляет на его место правильный, после чего репликация продолжается в обычном режиме.

Проведение ПЦР

Полимеразная цепная реакция (ПЦР) - метод амплификации ДНК, с помощью которого в течение нескольких часов можно выделить и размножить определённую последовательность ДНК в миллиарды раз. Возможность получения огромного количества копий одного строго определённого участка генома значительно упрощает исследование имеющегося образца ДНК.

Для проведения полимеразной цепной реакции необходимо соблюдение ряда условий. Для проведения ПЦР в простейшем случае требуются следующие компоненты:

ДНК-матрица, содержащая тот участок ДНК, который требуется амплифицировать.

Два праймера, комплементарные концам требуемого фрагмента. (Пара искусственно синтезированных олигонуклеотидов, имеющих, как правило, размер от 15 до 30 п. н., идентичные соответствующим участкам ДНК-мишени. Они играют ключевую роль в образовании продуктов реакции амплификации. Правильно подобранные праймеры обеспечивают специфичность и чувствительность тест-системы.)

Термостабильная ДНК-полимераза. Полимераза, используемая в ПЦР, должна сохранять активность при высокой температуре длительное время, поэтому используют ферменты, выделенные из термофилов - Thermus aquaticus (Taq-полимераза) и другие.

Дезоксинуклеотидтрифосфаты (dATP, dGTP, dCTP, dTTP).

Ионы Mg 2+, необходимые для работы полимеразы.

Буферный раствор, обеспечивающий необходимые условия реакции - pH, ионную силу раствора. Содержит соли, сывороточный альбумин.

Чтобы избежать испарения реакционной смеси, в пробирку добавляют высококипящее масло, например, вазелиновое. Если же используется прибор с подогревающейся крышкой, этого делать не требуется.

Добавление пирофосфатазы может увеличить выход ПЦР-реакции. Этот фермент катализирует гидролиз пирофосфата, побочного продукта присоединения нуклеотидтрифосфатов к растущей цепи ДНК, до ортофосфата. Пирофосфат может ингибировать ПЦР-реакцию.

Для многократного увеличения количества копий исходной ДНК нужна цикличность реакции. Как правило, каждый из последовательно повторяющихся циклов ПЦР состоит из трех этапов:

1 . Денатурация, или "плавление" ДНК. Двухцепочечную ДНК-матрицу нагревают до 94 - 96?С (или до 98?С, если используется особенно термостабильная полимераза) на 0,5 - 2 минуты, чтобы цепи ДНК разошлись. Эта стадия называется денатурацией, так как разрушаются водородные связи между двумя цепями ДНК. Иногда перед первым циклом (до добавления полимеразы) проводят предварительный прогрев реакционной смеси в течение 2 - 5 минут для полной денатурации матрицы и праймеров. Такой прием называется горячим стартом , он позволяет снизить количество неспецифичных продуктов реакции.

2. Отжиг - связывание праймеров с матричной ДНК . Когда цепи разошлись, температуру медленно понижают, чтобы парймеры могли связаться с одноцепочечной матрицей. Температура отжига зависит от состава праймеров и обычно выбирается 50-65?С. Время стадии - 20 - 60 секунд. Неправильный выбор температуры отжига приводит либо к плохому связыванию праймеров с матрицей (при завышенной температуре), либо к связыванию в неверном месте и появлению неспецифичных продуктов (при заниженной температуре).

3. Синтез (элонгация цепи). ДНК-полимераза реплицирует матричную цепь, используя праймер в качестве "затравки". Полимераза начинает синтез второй цепи от 3"-конца праймера, который связался с матрицей и движется вдоль матрицы. Температура элонгации зависит от полимеразы. Часто используемые полимеразы Taq и Pfu наиболее активны при 72?С. Время синтеза зависит от типа ДНК-полимеразы и от длины амплифицируемого фрагмента. Обычно время элонгации принимают равным одной минуте на каждую тысячу пар оснований. После окончания всех циклов часто проводят дополнительную стадию финальной элонгации , чтобы достроить все одноцепочечные фрагменты. Эта стадия длится 7 - 10 минут.

В дальнейшем этапы денатурации, отжига и элонгации многократно повторяются (30 и более раз). На каждом цикле количество синтезированных копий фрагмента ДНК удваивается.

Все реакции проводят в пробирках, погруженных в термостат. Смена температурного режима и его поддержание осуществляется автоматически.

Чтобы понять, как именно происходит амплификация определенного сегмента ДНК в ходе ПЦР, нужно четко представить положение всех праймеров и комплементарных им последовательностей в амплифицируемых цепях в каждом раунде. В первом раунде каждая из новосинтезированных цепей имеет гораздо большую длину, чем расстояние от 3" -гидроксильной группы ее праймера до концевого нуклеотида последовательности, комплементарной второму праймеру. Такие цепи называют "длинными матрицами", именно на них будет идти дальнейший синтез.

Во втором раунде двухцепочечную ДНК, состоящую из сходной и новосинтезированной (длинная матрица) цепей, опять подвергают денатурации, а затем отжигают с праймерами. Во время синтеза в этом раунде вновь синтезируются "длинные матрицы", а также некоторое количество цепей с праймером на одном конце и с последовательностью, комплементарной второму праймеру, на другом ("короткие матрицы"). Во время третьего раунда все гетеродуплексы, образовавшиеся ранее, одновременно подвергаются денатурации и отжигу с праймерами, а затем реплицируются. В последующих раундах "коротких матриц" становится все больше, и к 30-му раунду их число уже в 10 6 раз превышает число исходных цепей или "длинных матриц".

Количество специфического продукта реакции (ограниченного праймерами) теоретически возрастает пропорционально 2 n , где n - число циклов реакции. На самом деле эффективность каждого цикла может быть меньше 100%, поэтому в действительности:

где Р - количество продукта, Е - средняя эффективность цикла.

Число "длинных" копий ДНК тоже растет, но линейно, поэтому в продуктах реакции доминирует специфический фрагмент. Рост требуемого продукта в геометрической прогрессии ограничен количеством реагентов, присутствием ингибиторов, образованием побочных продуктов.

ПЦР - высокочувствительный метод, поэтому при наличии в исследуемом образце даже ничтожного количества ДНК, случайно попавшей из одной реакционной смеси в другую, могут быть получены ложноположительные результаты. Это заставляет тщательно контролировать все используемые для ПЦР растворы и посуду.

Основные принципы подбора праймеров.

При создании ПЦР-тест-системы одной из основных задач является правильный подбор праймеров, которые должны отвечать ряду критериев:

1. Праймеры должны быть специфичны. Особое внимание уделяют 3"-концам праймеров, т.к именно с них начинает достраивать комплементарную цепь ДНК Taq-полимераза. Если их специфичность недостаточна, то, вероятно, что в пробирке с реакционной смесью будут происходить нежелательные процессы, а именно, синтез неспецифической ДНК (коротких или длинных фрагментов). Она видна на электрофорезе в виде тяжелых или легких дополнительных полос. Это мешает оценке результатов реакции, т.к легко перепутать специфический продукт амплификации с синтезированной посторонней ДНК. Часть праймеров и дНТФ расходуется на синтез неспецифической ДНК, что приводит к значительной потере чувствительности.

2. Праймеры не должны образовывать димеры и петли, т.е. не должно образовываться устойчивых двойных цепей в результате отжига праймеров самих на себя или друг с другом.