Функции органов кроветворения. Кроветворные органы Основной орган кроветворения

К органам кроветворения взрослых млекопитающих относят красный костный мозг, селезенку и лимфатические узлы.

Костный мозг. Все ячейки губчатого вещества костей и объемистые полости диафиза трубчатых костей заполнены костным мозгом. Являясь частью кости, костный мозг вместе с нею развивается из мезенхимы. Последняя, дифференцируясь в сторону образования костного мозга, превращается в ретикулярную ткань его, которая без резких границ переходит во внутреннюю надкостницу. Ретикулярная ткань костного мозга способна давать разнообразные клетки крови, а также жировые клетки. На ранней стадии развития во всем костном мозге преобладает функция кроветворения, процессы же жирообразования протекают сравнительно медленно. Пока наряду с костным мозгом в качестве кроветворного органа функционирует печень, в костном мозге развиваются главным образом лимфоциты. После того как кроветворная деятельность печени прекратится, в костном мозге начинают развиваться преимущественно эритроциты и зернистые формы лейкоцитов.

С возрастом происходит изменение в соотношении кроветворной и жиро-накопляющей деятельности костного мозга. Костный мозг диафизов трубчатых костей начинает перерождаться в жировую ткань, в результате чего мозг из красного превращается в желтый, почему и называют его желтым костным мозгом. В этом мозге кроветворение совершается уже в очень небольших размерах. Однако при больших кровопотерях интенсивность кроветворения может сильно возрастать. В области эпифизов трубчатых костей и в губчатом веществе плоских костей костный мозг сохраняет на всю жизнь функцию кроветворения. Костный мозг этих участков красного цвета и называется красным костным мозгом.

Основу красного костного мозга составляет узкопетлистая ретикулярная ткань, в которой расположено большое количество кровеносных сосудов и различных клеток крови в разных фазах развития. 1. Гемоцитобласты- основная малодифференцированная форма красного костного мозга, которая через ряд промежуточных форм дает начало эритроцитам, зернистым лейкоцитам и мегакариоцитам. Морфологически гемоцитобласт представляет собой небольшую клетку с базофильной цитоплазмой и плотным округлым ядром. 2. В костном мозге находится также ряд клеточных форм, являющихся различными стадиями превращения гемоцитобласта в зрелый эритроцит. Зрелые эритроциты постепенно поступают в кровеносное русло и выносятся из кости. При больших кровопотерях и некоторых патологических процессах в кровеносное русло могут направляться незрелые эритроциты с ядрами. 3. Три других ряда клеток являются последовательными этапами превращения гемоцитобласта в три вида зернистых лейкоцитов: нейтрофилы, эозино-филы и базофилы. Молодые формы различных зернистых лейкоцитов очень разнообразны. 4. Одной из очень характерных для красного костного мозга форм является мегакариоцит. Это гигантская клетка округлой формы с

Рис. 274. Селезенка (вид с париетальной поверхности и на поперечном разрезе):

А - крупного рогатого скота; Б - свиньи; В - лошади.

Фрагментированным ядром и клеточным центром со множеством центрио-лей. Мегакариоциты развиваются тоже из гемоцитобласта и дают начало кровяным пластинкам. 5. В красном костном мозге всегда встречаются гигантские многоядерные клетки - по-ликариоциты. Их отождествляют с остеокластами, так как они участвуют в перестройке костной ткани. Цитоплазма их красится либо базофильно, либо оксифильно. 6. Наконец, в костном мозге всегда встречаются жировые и другие клетки. Соотношение между всеми этими клетками непостоянно и изменяется в зависимости от физиологического состояния организма.

Деятельность йостного мозга находится под контролем нервной системы. В костном мозге обнаружены нервные окончания.

Селезенка - lien (рис. 274) - имеет различную функцию. В утробный период в ней образуются эритроциты, а после рождения - лимфоциты и моноциты. В определенные моменты она является запасным депо крови, где сосредоточивается до 16% всего ее состава. Селезенка - место, где путем фагоцитоза и гемолиза организм освобождается от поврежденных или закончивших свой жизненный цикл эритроцитов. Ретикулярная ткань ее способна давать также фагоцитарные элементы.

В зависимости от того, какая функция в селезенке является преобладающей, различают селезенки депонирующего (жвачные, хищные, лошадь, свинья) и защитного (человек, кролик) типа.

Форма селезенки у разных животных различная. Лежит она в левом подреберье, у лошади, свиньи и собаки - на большой кривизне желуДка, у жвачных - на рубце (рис. 222-Б-5). Селезенка серого цвета с различным оттейком у разных животных. Консистенция ее мягкая. Величина значительно изменяется в зависимости от периода ее функциональной деятельности, возраста и породы животного.

Гистологическое строение селезенки (рис. 275). Селезенка - компактный орган. Строма ее образована капсулой (/), снаружи покрыта серозной оболочкой с отходящими от капсулы трабекулами (2). Эти образования значительной толщины и состоят из уплотненной соединительной ткани с примесью гладких мышечных клеток. При сокращении последних объем селезенки уменьшается в 3-4 раза. В трабекулах находятся кровеносные сосуды.

Паренхима селезенки состоит из красной и белой пульпы. Основу той и другой составляет ретикулярная ткань. Белая пульпа представляет собой комплекс округлых фолликулов селезенки (селезеночных, мальпиги-евых телец) (3).

Фолликул селезенки - это скопление лимфоидных элементов в ад-вентициальной оболочке артерий селезеночной паренхимы, Дифференциров-ка лимфоцитов из ретикулярной ткани селезенки происходит по всему объему лимфатического фолликула, но более активно - в центральном участке, называемом светлым центром. Последний в связи с большим количеством молодых форм клеток обычно светлее остальных участков. Основную массу клеток фолликула селезенки составляют малые лимфоциты. Периферическая зона занята, как правило, макрофагами. Мак-рофагальные кольца и светлые центры селезеночного фолликула сильно варьируют в зависимости от состояния организма. В каждом фолликуле селезенки эксцентрично проходит центральная артерия (4). Красная пульпа (5) состоит из ретикулярной ткани, в петлях ее находится огромное количество эритроцитов и макрофагов. В небольшом количестве

Рис. 275. Строение селезенки:

/ - капсула; 2 - трабекула; 3 - лимфатический фолликул; 4 - центральная артерия; 5 - красная пульпа; о - трабекулярный сосуд.

Здесь встречаются почти все

Формы лейкоцитов. В красной пульпе много также кровеносных сосудов. Кровообращение селезенки непосредственно связано с ее депонирующей функцией и определяет особенности сосудистой системы органа. В селезенку вступает селезеночная артерия. Ветви ее - трабекулярные артерии - проходят в массе трабекул. Покидая трабекулы, они входят в красную пульпу под названием пульпарнык артерий. Последние дают ветви,направляющиеся в селезеночные тельца и называемые центральными артериями. В селезеночном тельце каждая такая артерия дает боковые ветви, распадающиеся на сеть капилляров, питающих селезеночное тельце. Главная же магистраль центральной артерии, выйдя из селезеночного тельца, распадается сразу на ряд артерий, образующих кисточку. Стенки артерий-кисточек несут утолщения гильзы, являющиеся сфинктерами. Кровь из артерий-кисточек и из капилляров селезеночного тельца направляется в венозные синусы, расположенные в красной пульпе. Из некоторых боковых ветвей центральной артерии кровь, по-видимому, может изливаться прямо в пульпу, откуда она медленно просачивается в синусы. Из синусов кровь оттекает в трабекулярные вены, в начале которых также находятся сфинктеры. При сокращении этих сфинктеров кровь задерживается в синусах, и они сильно расширяются. В стенке синусов много пор, благодаря им плазма крови и частично эритроциты могут попадать в красную пульпу. Отфильтрованная таким образом плазма, видимо, оттекает из органа по лимфатическим сосудам, а эритроциты, особенно в момент депонирования крови, концентрируются в синусах венозной системы. При расслаблении гладкомышечной ткани селезенки синусы открываются, и из них выливаются накопившиеся эритроциты.

Гистологическое строение лимфатического узла. Лимфатический узел имеет вид округлого или овального тельца с небольшим углублением - воротами. Через ворота в узел вступают артерии, вены и нервы и выходят выносящие лимфатические сосуды. Приносящие же лимфу сосуды входят в узел через разные участки его выпуклой поверхности (рис. 276). Вещество

Лимфатического узла разделяется на две зоны - корковую, лежащую более поверхностно, и мозговую, составляющую центральную часть узла. Снаружи лимфатический узел покрыт соединительнотканной капсулой (2). От нее внутрь узла, в его корковую зону, вдаются отростки - трабекулы (5), разбивающие узел на дольки неправильной формы.

Рис. 276. Схема строения лимфатического узла:

/ - приносящие лимфатические сосуды; 2 - капсула; 3 - трабекулы; 4 - лимфатический фолликул; 5 - мякотные шнуры; 6 - сеть трабекул; 7 - сеть мякот-ных шнуров; 8 - выносящие лимфатические сосуды; 9 - лимфатические синусы.

В мозговом веществе трабекулы переплетаются, образуя сложную сеть трабекул. Основу каждой дольки лимфатического узла составляет ретикулярная ткань. В корковом веществе узла в массе этой ткани находятся более плотные участки ретикулярной ткани округлой формы, называемые фолликулами лимфатического узла. В них петли ретикулярной ткани уже и забиты лимфоцитами. По строению и функции они аналогичны фолликулам селезенки. От фолликулов лимфатического узла в мозговое вещество тянутся мякотные шнуры (5). Они также состоят из уплотненной ретикулярной ткани и находящихся в ней лимфоцитов и плазматических клеток. Анастомозируя друг с другом, мякотные шнуры образуют сеть мякотных шнуров (7). Пространства между фолликулами лимфатического узла и мякотными шнурами с одной стороны соединительнотканной капсулой и трабекулами - с другой называют синусами (9). Они тоже состоят из ретикулярной ткани, но более широкопетлистой. В лимфатическом узле свиньи мякотные шнуры обращены к капсуле, а фолликулы лимфатического узла часто занимают центральное положение. Поступающая через приносящие сосуды лимфа медленно просачивается через синусы и поступает в выносящие лимфатические сосуды. Протекая через лимфатический узел, лимфа обогащается лимфоцитами, а при инфекции - защитными веществами и фагоцитарными элементами. Ретикулярные клетки узла извлекают из лимфы всевозможные инородные частички, задерживают микробов.

Лимфоцитопоэтической функцией обладают также тимус (вилочковая или зобная железа), миндалины, лимфатические узелки (солитарные фолликулы и пейеровы бляшки), объединяемые в группу лимфоэпителиальных органов, так как в них лимфоидная ткань имеет тесные морфологические и онтофилогенетические (биологические) связи с эпителием (покровным или железистым). Все лимфоэпителиальные органы, кроме тимуса, построены аналогично селезеночным фолликулам.

Клеточные элементы всех органов кроветворения, а также гистиоциты соединительной ткани, микроглия нервной ткани, звездчатые клетки пе-

Чени, эндотелиальные клетки синусоидных капилляров коры надпочечников и гипофиза, адвентициальные клетки кровеносных капилляров всех органов объединены в так называемую ретикулоэндотелиальную систему (РЭС), или макрофаготическую систему. Все эти клетки обладают способностью к фагоцитозу и утилизации пылевых частиц и других вредных продуктов, отживших клеток, микробов. Захваченный материал переваривается в клетках РЭС благодаря наличию в них протеолитических и липолитичес-ких ферментов. Кроме того, они играют важную роль в формировании иммунитета, в них уничтожаются микроорганизмы, нейтрализуются токсины, вырабатываются антитела, то есть эта система является мощным защитным аппаратом организма, разбросанным по разным органам и органным системам,

Судя по письмам в редакцию, наши читатели все чаще сталкиваются с проблемами заболеваний крови, будучи родителями, близкими, родственниками больных, либо собственно больными.

Конечно, болезни крови и органов кроветворения существовали всегда. Однако в наше время ухудшающиеся условия жизнедеятельности (неполноценное питание, загрязнение воздуха и воды, радиация и др.) вносят негативные коррективы в заболеваемость населения (подверженность болезни, ее протекание, исход).

Заболевания крови, столь нередкие в наше время, у людей, встречающихся с ними, часто вызывают самые невероятные опасения, страхи и, как правило, полное непонимание того, что происходит с организмом при тех или иных болезнях крови, каковы шансы на излечение.

Что уж говорить о вопросах профилактики, предупреждения болезней органов кроветворения - люди подчас вообще не отдают себэ отчета е том, что такое кровь и откуда она берется, что дает организму, в чем ее жизнедеятельная сила.

Вот почему, идя навстречу пожеланиям читателей, мы посвящаем этой теме рубрику «Заочная школа пациента» в настоящем и двух-трех последующих выпусках «Твоё здоровье».

ЧАСТЬ I

Прежде чем обратиться к болезням крови как таковым и к вопросам их профилактики и излечения, попытаемся разобраться с тем, как возникает кроветворение в организме и как оно происходит – вначале внутриутробно, а затем с момента рождения – у детей и далее каким становится у взрослых.

КАК ВОЗНИКАЕТ У ЧЕЛОВЕКА КРОВЬ

Различаю; два принципиально разных периода жизни ребенка: внутриутробный и внеутробный (после рождения). И соответственно свои особенности имеют внутриутробное кроветворение эмбриона (и плода] и внеутребное кроветворение.

Известно, что внутриутробный период длится от момента оплодотворения яйцеклетки до рождения. Это продолжается около 230 дней, т. е. 9 календарных месяцев (точнее, 10 лунных месяцев - по 4 недели в каждом).

Внутриутробный период включает в себя эмбриональную фазу развития (первые 2 месяца) и следующую за ним фазу развития плода (плацентарную, или фетальную).

Так вот, процесс кроветворения начинается уже в конце 2-й - начале 3-й недели с момента оплодотворения. Рассмотрим три основные стадии кроветворения во внутриутробном периоде.

Знание об организме поможет нам уяснить, как обеспечивается здоровье человека и почему могут возникать те или иные заболевания.

I стадия - мезодермальная

Начавшись на рубеже 2-3 недель внутриутробного развития, мезодермальная стадия кроветворения заканчивается на 3-м месяце жизни плода.

Особенностью ее является то, что кроветворение происходит вне эмбриона - в кровяных островках желточного мешка, почему эту стадию и называют еще стадией внеэмбрионального кроветворения, или стадией ангиобласта, подчеркивая тем самым внутрисосудистый характер гемопоэза.

Как это происходит! Зачатки кровяной ткани, содержащие первичные кроветворные клетки, обособляются во внеэмбриональной мезенхиме, т. е. в совокупности отдельных клеток, расположенных в первичной полости тела между зародышевыми листками.

Уровень кроветворения других ростков совсем незначительный, в основном первичный эритропоэз происходит, как уже говорилось, в желточном мешке эмбриона.

Эти примитивные, еще содержащие ядро, первичные красные кровяные клетки называются мегалобластами, потому что, отличаясь большими размерами (метало), являются исходными ростковыми клеткам» (бласты).

II стадия - печеночно-селезеночная

Со временем клетки в неэмбриональной мезенхимы желточного мешка перемещаются внутрь тканей эмбриона и из них образуются внутренние органы.

Уже ка 3-4-й неделе у эмбриона закладывается в качества самостоятельного органа печень, но только с 5-й недели она становится центром кроветворения.

В печени кроветворение происходит вне сосудов - в островках мезенхимальных клеток, расположенных между печеночными клетками.

Сначала в печени эмбриона образуются первичные мегабласты, а с 6-й недели развития первичные мегабласты замещаются в печени вторичными эритробластами, все более приближающимися по размерам и форме к эритроцитам, кроме которых в печени образуются гранулоциты и мегакариоциты.

На 9-й неделе внутриутробного развития впервые в печени появляются В-лимфоциты. К 11-й неделе на их поверхности удается различить разные классы иммуноглобулинов.

С 5-го месяца интенсивность кроветворения а печени резко снижается, но небольшие островки печеночного кроветворения сохраняются вплоть до рождения ребенка.

Вилочковая, или зобная, железа (тимус) закладывается у эмбриона на 6-й неделе внутриутробного развития, а на 9-й и 10-й неделе в тимусе появляются первые лимфоидные клетки.

Эти клетки развиваются из переселившихся своих предшественников из желточного мешка и печени эмбриона.

Процесс клеточной дифференцировки приводит к развитию в тимусе и под его влиянием так называемых иммунокомпетентных Т-лимфоцитов, которые быстро накапливаются в вилочковой железе в большом количестве и интенсивно расселяются по всем кроветворным органам: печени, селезенке, костному мозгу, лимфатическим узлам.

Лимфоциты, находящиеся под влиянием тимуса (Т-лимфоциты), участвуют затем в иммунных реакциях клеточного типа.

Что касается закладки селезенки, это происходит у эмбриона в конце 6-й недели, а с 12-й недели в селезенке плода развиваются все клетки крови: вне сосудов - из стволовых клеток, попавших сюда, как полагают, из печени.

На первом этапе осуществляются эритроцитопоэз, гранулоцитопоэз и мегакариоцитопоэз, а с 20-й недели процесс этот сменяется интенсивным лимфопоэзом.

Полагают, что селезенку заселяют лимфоциты (но не стволовые клетки!) из тимуса, уже «обученные» клеточным иммунным реакциям.

В селезенке развивается вторичная лимфоидная ткань, в лимфоцитах которой с 20-й недели обнаруживают внутриклеточные иммуноглобулины.

Так как с 5-й по 16-ю недели процесс кроветворения наиболее интенсивно протекает в печени, а с 17-й - в селезенке, данную стадию кроветворения называют еще печеночно-селезеночной.

III стадия - костномозговая

С 13-14-й недели первые гемопоэтические очаги появляются в костном мозге. Вначале наиболее активными центрами кроветворения становятся трубчатые кости, затем ребра, грудина, тела позвонков. В костном мозге происходит образование клеток всех ростков кроветворения.

К концу 24-й недели жизни плода на долю костного мозга приходится уже около половины продукции эритроцитов, а к моменту рождения ребенка костный мозг в состоянии обеспечить уже весь эритроцитопоэз. То же откосится к гемопоэзу других ростков кроветворения.

Так как с 13-й недели жизни плода основным органом кроветворения становится костный мозг, эту стадию называют стадией костномозгового кроветворения.

Важно то обстоятельство, что в растущем и развивающемся организме нет и не может быть строгих временных границ смены одной стадии кроветворения другой, так как ослабление гемопоэтической активности в одном месте тут же сменяется ее усилением в другом месте.

В кроветворении также участвуют лимфатические узлы, которые впервые обнаруживаются на 13-14-й неделе развития плода. Процессы образования нейтрофилов в лимфатических узлах с 16-17-й недели быстро сменяются образованием лимфоцитов.

Лимфатические узлы заселяют «обученные» иммунным реакциям лимфоциты из тимуса. В лимфатических узлах развивается вторичная лимфоидная ткань. Образование лимфоцитов в лимфатических узлах начинается с 16-17-й недели развития плода.

С последовательностью включения различных органов в кроветворение плода можно ознакомиться в приведенной таблице.

Развитие гемопоэтической системы человека
Органы кроветворения Периоды внутриутробного развития, недели
Начало кроветворения внутри сосудов желточного мешка
Закладка печени
Начало кроветворения в печени
Закладка тимуса
Закладка селезенки
Появление первичных лимфоидных клеток в тимусе
Начало эритропоэза в селезенке
Начало гемопоэза в костном мозге
Появление первых лимфатических узлов
Начало лимфопоэза в периферических лимфатических узлах
Начало лимфопоэза в селезенке

КАК СКЛАДЫВАЕТСЯ КРОВЕТВОРЕНИЕ ПОСЛЕ РОЖДЕНИЯ

После рождения в процессе роста и развития ребенка различают несколько возрастных периодов:

период новорожденности - от момента рождения до 3-4 недель;

грудной или младший ясельный возраст - до 1 года;

преддошкольный или старший ясельный возраст - от 1 года до 3 лет;

дошкольный или детсадозский возраст - от 3 до 7 лет;

младший школьный еозраст или период отрочества - от 7 до 12 лет;

старший школьный возраст или период полового созревания - от 12 до 16-13 лет.

Присущие детскому возрасту физиологические особенности находят свое проявление во всей системе кроветворения ребенка и отражаются на количественном и качественном составе крови.

У ребенка раннего возраста (до 3 лет) кроветворение происходит во всех костях, но с 4-5 лет красный костный мозг в некоторых костях замещается желтым (жировым).

К 12-15 годам в процессе кроветворения участвует лишь красный костный мозг плоских костей (ребер, грудины), позвонков и эпифизов (суставных концов) длинных трубчатых костей.

К моменту рождения у ребенка хорошо развита и богата лимфоцитами вилочковая железа.

Селезенка и лимфатические узлы продолжают формироваться до 10-12 лет. За этот период в них возрастает количество лимфоидной ткани, совершенствуется их строение.

Первые признаки снижения роли селезенки и лимфатических узлов в кроветворении появляются после 20-30 лет, а вилочковой железы еще ранее - с 10-15 лет. При этом в лимфатических узлах и вилочковой железе разрастается соединительная ткань, увеличивается количество жировых клеток вплоть до почти полного замещения ими ткани этих органов, что приводит к постепенному уменьшению количества лимфоцитов.

Во всех органах кроветворения имеются капилляры особого синусного типа (от слово «синус» - «пазуха»). В синусах между внутренними выстилающими их клетками находятся поры, через которые ткань органа кроветворения непосредственно контактирует с кровяным руслом. Такое строение обеспечивает перемещение клеток крови из этих органов в кровоток и поступление к ним из крови различных веществ.

Итак, костный мозг у человека является главным местом образования клеток крови. В нем содержится основная масса стволовых кроветворных клеток и осуществляется образование эритроцитов, гранулоцитов, моноцитов, лимфоцитов, мегакариоцитов.

Костный мозг участвует в разрушении эритроцитов, в синтезе гемоглобина, служит местом накопления резервных жировых соединений. В связи с наличием в нем, а также в селезенке и лимфатических узлах большого количества мононуклеаркых фагоцитов все эти органы принимают участие в фагоцитозе.

Селезенка - один из наиболее сложноустроенных органов кроветворения у человека. Она принимает участие в лимфоцитопоэзе, разрушении эритроцитов, лейкоцитов и тромбоцитов, в накоплении железа и синтезе иммуноглобулинов. В ее функцию входит и депонирование (задержка в резерве) крови.

Селезенка, лимфатические узлы и вилочковая железа являются составными частями лимфатической системы, ответственной за выработку иммунитета.

Иммунитет - это невосприимчивость организма к инфекционным и неинфекционкым агентам и веществам, обладающим чужеродными антигенными свойствами. В эту систему входят также лимфатические образования, расположенные по ходу желудочно-кишечного тракта.

Центральным органом в системе формирования иммунитета является вилочковая железа. Установлено влияние вилочковой железы на образование Т-лимфоцитов, дифференцирующихся из костномозговых предшественников и участвующих в клеточных реакциях иммунитета. В-лимфоциты, осуществляющие гуморальные реакции иммунитета, образуются в костном мозге.

Деятельность кроветворных органов регулирует нервная система и гуморальные факторы стимулирующего и подавляющего действия.

Кроветворная система в детском возрасте обладает большими восстановительными возможностями, но вместе с тем она легко ранима. При некоторых заболеваниях возможно появление очагов кроветворения вне костного мозга, например, в печени, селезенке и лимфатических узлах.

Кроветворение у новорожденного

Кровь новорожденных детей имеет свои особенности, которые заключаются в следующем.

Удельный вес и вязкость крови у детей выше, чем у взрослых.

Количество гемоглобина и эритроцитов у них повышено.

У новорожденного на 1 кг массы тела приходится около 140 мл крови.

Количество гемоглобина при рождении колеблется от 170 до 240 г/л. После очень кратковременного нарастания в течение первых часов жизни это количество снижается и к концу первой недели падает до 140 г/л.

После рождения ребенок имеет 80% фетального (плодного] гемоглобина и лишь 20% гемоглобина взрослых . Постепенно в течение первых 3 ме¬сяцев жизни происходит замена фетального гемоглобина гемоглобином взрослых.

Число эритроцитов у здоровых новорожденных детей в первый день жизни колеблется от 4,5x10 12 /л до 7x10 12 /л (в среднем около 6x10 12 /л].

Вслед за некоторым повышением количества эритроцитов в первые 6-12 часов жизни новорожденного происходит систе-матическое снижение количества эритроцитов. К концу первого месяца жизни количество эритроцитов со¬ставляет у ребенка 4,5x10 12 /л.

Но кроветворение ребенка отличается не только количеством эритроцитов. У новорожденных детей средний диаметр эритроцитов значительно больше, чем у взрослого человека (7,2 мкм), и достигает 7,9-8,2 мкм. Такие эритроциты обозначают термином «макроциты» (большие эритроциты). Макроцитоз (увеличение размеров) эритроцитов - возрастная особенность новорожденных.

Присутствие в крови эритроцитов разного диаметра носит название акизоцитоза (anisos - «неравный»). Такие эритроциты содержат неодинаковое количество гемоглобина, поэтому у новорожденных легко выявляется разная окраска эритроцитов - полихроматофилия.

В крови у доношенных новорожденных детей встречается значительное количество предшественников эритроцитов - ретикулоцитов. Ретикулоцитами называют эритроциты, в которых с помощью специальной окраски выявляется сеточка [ретикулум] - следы, остатки цитоплазмы содержащих ядро клеток - предшественников эритроцитов.

В первче дни жизни ребенка количество ретикулоцитов превышает 4%. Затем их количество резко понижается, а к концу первого месяца жизни достигает обычно 0,6-0,8%, что считается нормой.

В первые часы жизни в крови новорожденных можно выявить значительное количество содержащих ядро предшественников эритроцитов - нормоцитов, однако их число быстро снижается, и уже к концу первой недели они больше не обнаруживаются.

Цветовой показатель эритроцитов у новорожденных в течение первой недели жизни чаще бывает выше единицы (до 1,3), что связано с тем, что макроциты [эритроциты большого диаметра] содержат гемоглобина больше, чем обычные эритроциты.

Наличие большого числа эритроцитов, повышенное количество гемоглобина, увеличение предшественников зрелых эритроцитов [ретикулоцитов и нормоцитов] указывает на усиление гемопоэза у новорожденных.

Это объясняется тем, что внутриутробный период развития связан у плода с меньшим поступлением кислорода, чем у новорожденного, в организм которого кислород проникает не через плаценту матери, а с помощью легочного дыхания.

Относительная гипоксемия (сниженное количество кислорода в крови) плода компенсируется увеличенным количеством гемоглобина и эритроцитов.

Скорость оседания эритроцитов у новорожденных несколько замедленна (СОЭ - 2-3 мм/ч), имеются эритроциты с повышенной и пониженной осмотической стойкостью.

Число лейкоцитов при рождении достигает 10x10 9 /л - 30x10 9 /л. В первые часы жизни их число несколько увеличивается, а затем снижается. У детей первого года жизни число лейкоцитов 11x10 9 /л считается нормальным.

В течение первых же дней жизни у ребенка значительно изменяется лейкоцитарная формула - процентное соотношение отдельных элементов белых клеток крови.

Число нейтрофилов, достигающее при рождении 66% общего количества белых клеток крови, начинает быстро снижаться, а число лимфоцитов [при рождении около 15-30%], наоборот, быстро нарастает.

Около 5-6-го дня жизни кривые нейтрофилов и лимфоцитов, отражающие процентное соотношение этих клеток в периферической крови, перекрещиваются [первый перекрест], и к концу месяца число нейтрофилов снижается до 30-25%, а число лимфоцитов повышается до 55-60%.

В период новорожденности всегда отмечается умеренный сдвиг формулы нейтрофилов влево до миелоцитов и метамиелоцитов, количество эозинофилов колеблется от 0,5 до 8%, базофилы часто отсутствуют, количество моноцитов достигает 8-14%.

Изменения в лейкоцитарной формуле у новорожденных аналогичны таковым в анализе крови беременной женщины в последние дни перед рождением ребенка. Некоторые ученые считают, что эти изменения обусловлены гормональными изменениями, происходящими в организме матери накануне родов.

Проникновение гормонов через плаценту стимулирует гранулоцитопоэз у плода и новорожденного. После родов эти влияния прекращаются. В связи с этим лейкоцитарная формула в первые дни жизни ребенка изменяется не по дням, а по часам.

Количество тромбоцитов в крови новорожденных колеблется от 140x10 9 /л до 400x10 9 /л. Кровяные пластинки бывают неодинаковой величины и формы.

Таким образом, особенности крови новорожденных детей характеризуются высоким уровнем гемоглобина, быстрой сменой фетального гемоглобина гемоглобином взрослых, большим количеством эритроцитов, лейкоцитов и тромбоцитов и высоким цветным показателем.

Интересно отметить, что если количество форменных элементов в крови взрослых мужчин и женщин имеет отличия, то пол ребенка заметно не отражается на количественной и качественной картине всех форменных элементов крови.

Кроветворение в грудном возраста

Начавшееся после рождения снижение уровня гемоглобина продолжается в течение первых месяцев жизни у всех даже совершенно здоровых, правильно вскармливаемых детей, живущих в хороших условиях.

Уровень гемоглобина у детей грудного возраста может понижаться до 120-110 г/л и оставаться на этих цифрах до конца первого года жизни. Количество эритроцитов снижается до 4x10 12 /л-3,5x10 12 /л. Цветовой показатель становится меньше единицы .

Указанные данные для грудного ребенка являются совершенно нормальным явлением. Однако врачам-педиатрам известно, что самые разнообразные причины - неправильное питание, недостаточное пребывание на свежем воздухе, негигиенические условия жизни, заболевания - могут усиливать этот физиологический процесс, вызывая развитие патологического малокровия.

В грудном возрасте количество гемоглобина и эритроцитов подвержено большим индивидуальным колебаниям.

После 2-3 месяцев жизни у ребенка в крови исчезают анизоцитоз и полихроматофилия эритроцитов.

К 3 месяцам непосредственные предшественники эритроцитов - ретикулоциты редко превышают нормальный уровень . СОЭ [скорость оседания эритроцитсв] у грудных детей держится на уровне 3-5 мм/ч.

Количество лейкоцитов в крови в среднем составляет 10х10 9 /л-11х10 9 /л. Среди лейкоцитов преобладают лимфоциты, отмечается небольшой сдвиг нейтрофилов влево до палочкоядерных форм, умеренно выражен моноцитоз.

В грудном возрасте количества кровяных пластинок [тромбоцитов] стабилизируется на уровне 200х10 9 /л-300x10 9 /л.

Для морфологического состава крови детей первого года жизни характерны значительные индивидуальные колебания, что зависит от чувствительности всей системы кроветворения каждого отдельного ребенка к воздействию внешних и внутренних факторов.

Кровь ребенка в последующие периоды жизни отличается уже большим постоянством и к моменту полового созревания приобретает сходство с кровью взрослых.

Кроветворение в дошкольном возрасте и старше.

У детей старше одного года постепенно нарастает количество гемоглобина (до 130-150 г/л) и эритроцитов (до 4,5x10 12 /л-5x10 12 /л).

Количество предшественников эритроцитов - ретикулоцитов не превышает 0,6-0,8%. Цветовой показатель составляет 0,85-1,0. СОЭ в этом возрасте постепенно достигает 5-10 мм/ч.

Количество лейкоцитов у старших детей имеет тенденцию уменьшаться до 9x10 9 /л-6x10 9 /л. В лейкоци-тарной формуле постепенно становится больше нейтрофилов и соответственно меньше лимфоцитов.

Второй перекрест кривых процентного содержания нейтрофилов и лимфоцитов происходит в 5-7-летнем возрасте ребенка, а затем количество нейтрофилов у детей все больше и больше превалирует над лимфоцитами, пока не достигнет цифр, характерных для взрослых.

Если перед первым перекрестком абсолютное числа нейтрофилов почти в 2 раза превосходит абсолютное число лимфоцитов, то до второго перекреста, например в возрасте одного года, абсолютное число нейтрофилов в 2 раза меньше абсолютного числа лимфоцитов, но после второго перекреста, в 5-7-летнем возраста, количество нейтрофилов продолжает расти (а лимфоцитов соответственно снижаться) и, наконец, к 14-15 годам жизни ребенка количество нейтрофилов вновь в 2 раза превышает количество лимфоцитов.

С возрастом несколько уменьшается количество моноцитов, исчезают плазматические клетки. Количество тромбоцитов у детей независимо от возраста соответствует норме взрослых и составляет 200x10 9 /л-З00x10 9 /л.

Необходимо иметь в виду, что у детей и в возрасте старше одного года показатели крови подвержены довольно шиооким индивидуальным колебаниям, однако эти колебания тем шире, чем моложе ребенок.

У детей стершего школьного возраста и подростков показатели крови аналогичны таковым у взрослых людей.

ЧТО НАДО ЗНАТЬ О СХЕМЕ КРОВЕТВОРЕНИЯ

В периферической крови плода человека на ранних этапах основными клетками являются эритробласты, количество которых на 4-8-й неделе достигает 100x10 9 /л, а затем интенсивно снижается до 5x10 9 /л на 28-й неделе.

Число гранулоцитов увеличивается в эти же сроки с 0,050x10 9 /л до 10,0x10 9 /п. Первичные лимфоциты в тимусе появляются уже на 9-10-й неделе, моноциты еще раньше - с 5-й недели.

Количество отдельных клеток у эмбриона и плода колеблется в довольно широких пределах, а общая закономерность состоит в том, что содержащие ядро примитивные эритробласты постепенно сменяются нормальными эритробластами. Образование гранулоцитов по мере взросления плода неуклонно нарастает.

Включившись в гемопоэз с 13-14-й недели, костный мозг к моменту рождения ребенка становится основным органом кроветворения у человека.

Процесс кроветворения можно представить в виде схемы, напоминающей ствол дерева, от которого расходятся ветви. Зрелые, дифференцированные клетки можно представить себе как завершающие отдельную ветвь листья, а может быть, как цветы или плоды.

Для удобства восприятия от простого к более сложному в схеме кроветворения ствол дерева перевернут на 180°, поэтому не ствол, а отдельные ветви обращены к земле.

Первой ступенью, или исходными клетками, форменных элементов крови являются так называемые стволовые клетки. Морфологически они сходны с большими лимфоцитами. Эти клетки способны и к самостоятельному существованию, и к дифференцировке по всем отдельным росткам кроветворения. Такая исходная потенциальная многогранность клеток по их возможностям обозначается термином «полипотентность».

Отдельная стволовая клетка обладает очень высокой способностью к самостоятельному существованию или самоподдержанию. Число проделываемых ею делений (митозов) может достичь 100.

Из всех стволовых клеток в состоянии деления находится одна из каждых пяти клеток, а остальные четыре пребывают в покое, ожидая своего часа, если таковой наступит. Они могут вступить в действие, когда организму нужно бороться с последствиями больших кровотечений.

Следующая, вторая ступень развития форменных элементов крови представлена двумя типами клеток: клеткой - предшественницей лимфопоэза и клеткой - предшественницей элементов костного мозга: гранулоцитов, моноцитов, эритроцитов, тромбоцитов.

Экспериментальных доказательств существования клеток-предшественниц пока не получено, однако анализ опухолевых трансформаций, наблюдавшихся в клетках при некоторых заболеваниях крови и кроветворных органов (в частности, при лейкозах), привел авторов схемы к выводу, что такие клетки должны существовать. На схеме кроветворения эти предполагаемые клетки обозначены пунктирами.

Третья ступень, или третий класс клеток, - поэтин-чувствительные клетки. Морфологически их трудно отличить от стволовых клеток, так как они выглядят как большие и средние лимфоциты. Каждая из них является родоначальницей строго определенного ростка, или ветви кроветворения.

В связи с этим третий класс клеток называют еще унипотентными клетками-предшественницами. Их деятельность зависит от гуморальной регуляции, то есть координация физиологических и биохимических процессов внутри этих клеток осуществляется через жидкие среды (кровь, лимфу и тканевую жидкость) с помощью специальных растворенных в них веществ, которые носят название «поэтины».

Поскольку именно на уровне указанных клеток реализуется количественная регуляция кроветворения, среди поэтинчувствительных клеток доля делящихся, размножающихся клеток достигает 60-80 и даже 100%.

Из клеток третьего класса на рисунке можно видеть предшественников В-лимфоцитов, Т-лимфоцитов, общего предшественника гранулоцитов [нейтрофилов и базофилов] и моноцитов, предшественника эритроцитов [эритропоэтинчувствительную клетку], предшественника тромбоцитов [тромбоцитопоэтинчувствительную клетку].

В схеме кроветворения есть и исключения из общего правила. Так, установлено, что эозинофилы имеют собственную клетку-предшественницу иную, чем общая клетка - предшественница гранулоцитов и моноцитов.

Четвертый класс клеток - это так называемые властные клеточные элементы, открывающие уже совершенно самостоятельные, обособленные созревающие клеточные пулы, клеточные ряды.

Для В-лимфоцитов исходной клеткой созревающего клеточного пула является плазмобласт, для Т-лимфоцитов - лимфобласт, для моноцитов - монобласт, для гранулоцитов - миелобласт, для эритроцитов - эритробласт, для тромбоцитов - мегакариобласт.

Ростковые [бластные] клетки почти всех рядов [пулов] по морфологическим признакам [за исключением метакариобласта] бывает очень трудно различать. Для их идентификации в настоящее время предложены многочисленные окраски.

По сочетанию скрещивающихся ферментов и интенсивности окраски бластные клетки относят к тому или иному ростку кроветворения.

СХЕМА КРОВЕТВОРЕНИЯ

Пятый класс клеток - созревающие клеточные элементы. Они не только претерпевают деления, но и дифференцируются - первоначально одинаковые клетки превращаются в специализированные клетки тканей и органов.

С процессе дифференцировки клетки проделывают неодинаковое количество митозов [делений], поэтому из одной клетки-предшестзенницы может образоваться разное количество клеток. Каждому ростку свойственно свое число митозов.

Шестой класс клеток - это зрелые, дифференцированные клетки, которые током крови вымываются из костного мозга в циркулирующую кровь.

Для оценки клеточного состава костного мозга предложены нормативные показатели, отражающие процентное соотношение клеток паренхимы костного мозга (его кроветворной части). Эти показатели приведены в таблице.

Нормативные показатели клеточных элементов костного мозга

Как и любой другой орган, костный мозг состоит из паренхимы и стромы. Абсолютное большинство клеток в костном мозге представлено клетками паренхимы [кроветворной ткани] и их производными - зрелыми дифференцированными клетками крови.

Клетки стромы костного мозга носят обобщающее название «механоциты». Среди механоцитов различают ретикулярные клетки - недифференцированные клетки стромы, фибробласты и фиброциты, остеобласты и остеоциты.

ЖЕЛЕЗОДЕФИЦИТНАЯ АНЕМИЯ

Железодефицитная анемия - это малокровие, обусловленное дефицитом в организме железа. Возникновение термина «анемия» ]бескровие] связано с развитием болезненного состояния организма в результате той или иной степени кровопотери.

В настоящее время установлено, что анемия развивается не только под влиянием кровопотери, но и вследствие нарушения образования гемоглобина и эритроцитов, а также из-за повышенного их разрушения.

О происхождении болезни

В 85-90% случаев железодефицитные анемии у детей отмечаются в еозрасте до 3 лет. Причины этих анемий определяются нарушением поступления, распределения и использования железа в организме ребенка.

В течение первых 6 месяцев внутриутробной жизни плод практически не получает железа из организма матери. Накопление железа у плода начинается лишь в последние 3 месяца до нормальных родов. К моменту рождения нормальный доношенный ребенок имеет запас железа в организме в количестве 250-300 мг.

У новорожденных и у детей раннего возраста железо в организме распределяется следующим образом: 80% - в эритроцитах, 1% - в костном мозге, плазме, макрофагально-гистиоцитарной системе, ферментах, 10 - 12% - в печени и селезенке, 7-9% - в мышцах.

У детей среднего и старшего возраста и у взрослых 65-70% железа сосредоточено в эритроцитах, 1% - в костном мозге, плазме, макрофагально-гистиоцитарной системе, ферментах, 10-15% - в печени и селезенке, 20-22% - в мышцах.

Различают геминное [функционирующее железо эритроцитов, эритробластов, миоглобина, ферментов], транспортное [в плазме крови] и негеминное [в мышцах и органах] железо.

Таким образом, приведенные данные показывают, что доля депонированного железа у новорожденного и ребенка раннего возраста почти в 2 раза меньше, чем у взрослого.

Недоношенность на 1-2 месяца может привести к сокращению запасов железа в 1,5-2 раза и более по сравнению с нормой.

В норме свыше 50% кругооборота железа в организме совершается по замкнутому циклу, связанному с образованием и разрушением эритроцитов, и лишь 10% кругооборота железа происходит за счет восполнения сравнительно небольших потерь этого элемента продуктами питания.

Железо расходуется на рост ногтей и волос, пигментацию последних, участие в иммунологических процессах, выделяется при десквамации кожи, с потом, при менструациях, скрытых и явных кровотечениях, выводится из организма с желчью, мочой, калом, расходуется при инфекциях.

Большой дополнительный расход железа происходит при беременности, кормлении ребенка грудью, а у детей - при быстром росте, в период полового созревания.

Новорожденный ребенок очень быстро растет, что предъявляет к его костному мозгу повышенные требования, так как увеличивающаяся масса тела требует соответственно увеличения массы крови.

Запасы железа в организме постепенно истощаются, а поступление жепеза с грудным молоком матери становится явно недостаточным. В 1 л женского молока содержится всего 0,7 мг жепеза, из которого усваивается всего пишь 13-22 мкг%. Минимальная потребность ребенка в железе составляет 0,5 мг в сутки.

Таким образом, чтобы удовлетворить суточную потребность в этом элементе с учетом железа, всасываемого с материнским молоком, ребенок должен выпить его 25 л в сутки!

Итак, ребенок раннего возраста развивается при отрицательном балансе железа - потребность в нем превышает поступление в 25 раз!

При искусственном и смешанном вскармливании детей дефицит железа еще больше, так как содержание усваиваемого железа в коровьем молоке в 2-3 раза меньше, чем в женском.

В том случае, когда все запасы железа с пищевыми продуктами по тем или иным причинам не покрывают его отрицательного баланса в организме, последний до определенного времени покрывается из депо.

Когда и запасы депо оказываются исчерпанными, отрицательный баланс железа в организме из скрытого становится явным - развивается железодефицитная гипохромная анемия.

У доношенных детей это чаще происходит к 4-5-му месяцу жизни, у недоношенных - еще раньше, на 2-3-м месяце. Развившуюся железодефицитную анемию вылечить только с помощью продуктов питания, богатых железом, невозможно.

Более того, обеспечение ребенка продуктами питания, богатыми железом, не всегда предотвращает его недостаток в организме. Не всякое железо всасывается в кишечнике.

В частности, содержащаяся в продуктах питания окись железа всасывается очень плохо, в то время как закись железа хорошо. Вот почему для улучшения снабжения организма ребенка железом необходимо, чтобы окисное железо превратилось в закисное.

Такому превращению способствует витамин С, а также медь и нормальная кишечная флора.

Переедание, употребление преимущественно растительной пищи, однообразное молочное питание, изменение бактериальной флоры кишечника [диебактериоз] под влиянием длительного применения антибиотиков тормозят процесс восстановления железа, т. е. переход его из окисного в закисное.

Кроме того, следует учитывать, что такие вещества, как фосфаты, кальцинаты и др., соединяясь с железом, образуют нерастворимые соли; это также препятствует усвоению железа.

Всасывание железа происходит в двенадцатиперстной кишке и прилегающих к ней участках тонкого кишечника. Если ребенок страдает органическим расстройством деятельности желудка и кишечника, то всасывание железа значительно ухудшается.

В диагностике железодефицитных анемий имеют значение некоторые анамнестические сведения, в частности, дефицит железа у матери в период беременности (многоплодная беременность, преждевременные роды и т. д.), недоношенность, травмы ребенка во время родов, резкая бледность и вялость новорожденного, кровотечения у него.

Большое значение в возникновении железодефицитных анемий в последующие возрастные периоды имеют инфекционные заболевания, искусственное, смешанное и одностороннее вскармливание (питание), например молочное и мучное, рахит, глистная инвазия, резкое снижение кислотности желудочного сока, интенсивный рост, бурное половое созревание, ранние м обильные менструации у девочек, обильные кровопотери после травм.

Клиническая картина

Клиническими проявлениями железодефицитной анемии являются потеря аппетита, задержка физического развития, вялость, неустойчивое настроение ребенка плаксивость.

Обращает на себя внимание прогрессирующая бледность слизистых оболочек рта и кожи. Кожа приобретает восковидный оттенок. Ушные раковины становятся особенно бледными и прозрачными.

В период полового созревания некоторые подростки имеют типичный «хлоротичный» вид: резкую бледность кожи с зеленоватым оттенком (отсюда и название «хлороз», шершавость кожи, хрупкость ногтей, ломкость волос [волосы секутся, выпадают].

Независимо от возраста отмечается гипотония мышц. Обычные для ребенка подвижные игры быстро вызывают физическое утомление, апатию, иногда сонливость.

Со стороны сердечно-сосудистой системы отмечаются такие симптомы, как учащение пульса, незначительное расширение границ сердца разномерно во все стороны, у некоторых больных появляется нежный «анемический» систолический шум над областью сердца.

В патологический процесс вовлекаются и органы пищеварения. У детей с жалезодефицитными анемиями снижается аппетит, иногда дети совсем отказываются от пищи.

В ряде случаев аппетит извращается и дети начинают есть явно несъедобные вещи, например, мел, землю и т. д.

Наблюдаются спастические явления в пищеводе, кишечнике, которые выражаются в болевых ощущениях за грудиной, в животе. При тяжелой анемии появляются диспепсические расстройства - запор, понос. У некоторых детей увеличивается печень и селезенка.

Нарушается деятельность центральной нервной системы. Могут беспокоить головная боль, шум и звон в ушах, наблюдаются головокружения, обмороки, теряется интерес к окружающему, к учебе, выражен негативизм, утрачивается способность к сосредоточению, снижается успеваемость в школе.

У ребенка падает эмоциональный тонус и хорошее настроение, он становится плаксивым, раздражительным, капризным. Маленькие дети отстают в психомоторном развитии, у них легче развивается гипотрофия.

Дети склонны к более частым ринитам, у них развивается атрофия сосочков языка [«полированный язык»], легко образуется кариес зубов в результате нарушений обмена в эмали.

Возможности диагностики

Самые характерные симптомы определяются при исследовании крови. Выявляется снижение содержания гемоглобина. Минимальный уровень гемоглобина у детей в возрасте до 3 месяцев принято считать равным 126 г/л, от 3 месяцев до 5 лет - 110 г/л, старше 5 лет - 120 г/л.

Железодефицитная анемия диагностируется и считается легкой при снижении уровня гемоглобина до 90 г/л, среднетяжелой - до 70 г/л, тяжелой - менее 70 г/л, катастрофической - менее 30 г/л.

Уменьшение эритроцитов в периферической крови бывает только у 20% дегей с тяжелой анемией. Эритроцитопения совсем не обязательный признак для железодефицитнсй анемии у детей. Во все возрастные периоды количество эритроцитов на нижней границе нормы соответствует 4,2x10 12 /л.

Среди нормальных эритроцитов [нормоцитов] обнаруживаются эритроциты с рядом морфологических особенностей: отмечается анизоцитоз - появление эритроцитов различного диаметра пойкилоцитоз - выявление эритроцитов измененной формы [вытянутые, колбообразные, грушевидные, заостренные, веретенообразные и т. д.], микроцитоз - обнаружение эритроцитов уменьшенного диаметра. Количество ретикулоцитов не изменено.

Цветовой показатель рассчитывается по формуле Е. А. Кост (1975):

А x 0.3: В = цветовой показатель, где

В - первые две цифры числа эритроцитов.

В норме цветовой показатель колеблется от 0,85 до 1,05. При железодефииитной анемии цветовой показатель снижается ниже 0,85.

К наиболее достоверным признакам железодефицитной анемии относятся уменьшение сывороточного железа [в норме сывороточное железо составляет 13,5-30,0 мкХмоль/л], повышение общей железосвязывающей способности сыворотки крови [в норме 45-72 мкХмоль/л].

В костном мозге лейкоэритробластическое отношение не нарушается [в норме 4:1], в красном [эритронормобластическом] ростке уменьшается число оксифильных нормоцитов и несколько увеличивается число полихроматофильных нормоцитов.

Возможности лечения

Любое заболевание отягощает течение анемии, затрудняет ее лечение. Ребенка, больного анемией, надо тщательно изолировать от больных с другими заболеваниями, не допускать ни перегревания, ни охлаждения.

Питание больного ребенка максимально разнообразят, с тем чтобы он получал все необходимые пищевые вещества и микроэлементы.

Для детей старше 5 месяцев в диету включают овощное пюое, в состав которого входят белокочанная капуста, моркозь, свекла, шпинат, репа, цветная капуста и др., а старше 7 месяцев - мясной фарш и 1-2 раза в неделю отварную печенку или печеночный паштет.

Обязательно следует давать яичный желток. Помимо названных выше продуктов, детям дают свежие фрукты и ягодные соки.

К продуктам, богатым железом, медью, кобальтом, никелем и марганцем, относятся язык, печень, мясо, рыба, горох, фасоль, картофель, свекла, редис, капуста, орехи, черная смородина, сливы, груши, яблоки, смесь сушеных фруктов.

Кобальтом и фолиевой кислотой богаты творог, яичный желток, печень, дрожжи.

Одностороннее питание детей, в частности преимущественно молочное, крупяное и мучное, оказывает неблагоприятное влияние на результаты лечения.

Лечение железодефицитных анемий включает устранение кровотечений [острых, хронических, скрытых и явных], назначение препаратов железа и витаминов.

Если у ребенка глисты, проводят дегельминтизацию.

Препараты железа целесообразно назначать в промежутках между приемами пищи до 3-4 раз в день, запивать водой.

Непосредственно до и после приемов препаратов железа не рекомендуется давать детям чай, молоко, жирные и некоторые мучные пгодукты (сдобное тесто, печенье), поскольку они способствуют образованию нерастворимых соединений железа, которые плохо всасываются в кишечнике. Это же стносится к кофе и неразбавленным фруктовым сокам.

Чтобы препараты железа лучше усваивались и меньше раздражали слизистую желудочно-кишечного тракта, их рекомендуют принимать через 1 час после еды.

Курсовая доза железа рассчитывается по формулам. Приведем формулу Е. Н. Мосягиной (1969):

Fe - (курс в мг) = (16 г% - Hв г%) : 100 x 3,4 X 75 X (вес больного в кг) х 1,3,

16 г - идеальное содержание железа в крови;

3,4 - количество мг железа в 1,0 г гемоглобина (Нв);

75 - количество крови в мл на 1 кг веса ребенка [в среднем];

1,3 - добавочный коэффициент, исходящий из того, что в норме количество депонированного железа составляет 30% от железа эритроцитов.

Лучший лечебный эффект оказывают препараты двухвалентного закисного железа так как они легко всасываются в кишечнике. Детям раннего возраста назначают жидкие препараты железа, старшего возраста - в таблетках и порошках.

Из жидких препаратов используют сироп алоэ с железом [в 1 мл 20 мг элементарного железа], орферон жидкий [Югославия].

Детям старше одного года назначают любые препараты закисного двухвалентного железа, которые они хорошо переносят: железа закисного сульфат , железа лактат , гемостимулин , ферроплекс (40 мг элементарного железа в 1 таблетке], феррокаль , ферроцерон и другие препараты.

При двухвалентной форме лекарственного железа в среднем суточная доза рекомендуется из расчета 5 мг/кг : детям до 3 лет - 60-90 мг/сут, детям 3-6 лет - 100-200 мг/сут. детям старше 7 лет - до 300 мг/сут.

В случае непереносимости (тошнота, рвота, понос, запор, боли е животе) или побочном токсическом действии препаратов железа [оно более выражено у препаратов, содержащих трехвалентнее железо] лекарство нужно отменить или сделать перерыз в лечении.

Если препараты железа вызывают диспепсические расстройства, то их дозу уменьшают наполовину [временно!], а после еды назначают панкреатин (по 0,15-0,2 г x З раза в день).

Лечение витамином В 12 показана лишь к концу лечения, когда депо организма насыщены железом и цветной показатель приближается к единице, но количество эритроцитов еще не достигло возрастной нормы, в этом случае целесообразно произвести 2-3 инъекции витамина В 12 по 50-100 мкг в сутки через день для стимуляции эритропоэза.

По достижении нормальных показателей содержания гемоглобина лечение препаратами железа не прекращают, а продолжают еще 6-8 недель для создания депо железа в печени, селезенке, мышцах.

При лечении тяжелых железодефицитных анемий иногда прибегают к парентеральному [внутримышечному и внутривенному] введению препаратов. Показаниями являются невозможность принимать препараты железа внутрь в связи е непереносимостью, мальабсорбцией, язвенной болезнью и пр.

Применяют феррум-лек [для внутримышечного введения 1 ампула содержит 100 мг железа в 2 мл, для внутривенного введения 1 ампула содержит 100 мг жепеза а 5 мл], фербитол (для внутримышечного введения, болезнен, 1 флакон содержит 100 мг железа в 2 мл], жектофер (для внутримышечного введения 1 ампула содержит 130 мг железа в 2 мл].

Ежедневная максимальная доза препарата для внутри мышечного введения в наружный квадрант ягодицы составляет детям до 1 года с массой тела до 5 кг - 0,5 мл; с массой тела 5-10 кг - 1 мл; детям после 1 года - 2 мл; детям старшего возраста - 3-4 мл.

Парентеральные препараты могут вызывать аллергические реакции вплоть до шока.

Лечение этими препаратами возможно только в стационаре, по строгим показаниям, обязательно в присутствии и под наблюдением врача.

Острые и тяжелые постгеморрагические анемии, особенно при отсутствии адаптации к ним больного, развитии гипоксии необходимо купировать с помощью эритроцитной массы, которую вводят медленно струйно из расчета 10 мл/кг массы тела ребенка первого года жизни и в разовой дозе 120-250 мл капельно детям старшего возраста.

Трансфузия 100 мл эритроцитной массы эквивалентна введению 120 мг полностью утилизируемого железа.

Из витаминных и витаминизированных препаратов можно рекомендовать следующие.

Витамин С (аскорбиновая кислота] - участвует в обмене железа [способствует его всасыванию в кишечнике, включению в гем и сохранению железа в геме двухвалентным].

Разовая доза 0,05-0,15 x 2-3 раза а день после еды. Выпускается а таблетках по 0,025; 0,05 и 0,1.

Сироп из плодов шиповника - готовится из сока плодов шиповника и экстракта ягод калины, клюквы, рябины и др. В 1 мл содержит 4 мг аскорбиновой кислоты.

Назначается по ½-1 чайной, десертной, столовой ложке в зависимости от возраста 2-3 раза а день. Выпускается в бутылочках по 260-270 мл или в баночках по 200 мл.

Витаминизированный сироп из плодов шиповника содержит в 1 мл препарата 30 мг витамина С и 15 мг витамина Р. Выпускается в баночках по 200-250 мл. Назначается по ½-1 чайной ложке 1-3 раза в день.

Прогноз при железодефицитной анемии у детей благоприятный. Заболевание может прогрессировать лишь при отсутствия лечения. Недостаточное по объему лечение может перезести манифестный дефицит железа в латентный, скрытый. Возможны рецидивы заболевания.

Профилактика железодефицитной анемии наиболее эффективна при содружественной работе терапевта, акушера-гинеколога и педиатра. По рекомендации ВОЗ целесообразен прием препаратов железа в профилактической дозе, составляющей 1/3 лечебной, женщиной при повторной беременности, при наличии у нее в анамнезе анемии, обильных кровотечений.

Группу риска по железодефицитной анемии составляют дети, родившиеся с большой массой тела, врожденной гипотрофией, от многоплодной беременности, недоношенные, а также от матерей, страдавших латентным дефицитом железа или анемией.

В эту же группу входят дети с аллергическими поражениями кожи и слизистых оболочек [экссудативный диатез], с респираторными и кишечными заболеваниями, глистными инвазиями.

У перечисленных детей легко возникает патентный дефицит железа и железодефицитная анемия. В связи с этим указанная группа детей подлежит диспансерному наблюдению в течение 2 лет с регулярным анализом кроаи 1 раз в 3 месяца [наиболее информативен анализ после заболеваний, кровопотери и других анемизирующих факторов].

При малейших признаках дефицита железа, а тем более наличии железодефицитной анемии необходимо назначать комплексное противоанемическое лечение.

Часть первая – общая характеристика, классификация; красный костный мозг

К системе органов кроветворения и иммунной защиты относят красный костный мозг, тимус (вилочковая железа), селезенку, лимфатические узлы, а также лимфатические узелки в составе слизистых оболочек (например, пищеварительного тракта - миндалины, лимфатические узелки кишечника, и других органов). Это совокупность органов, поддерживающих гомеостаз системы крови и иммунокомпетентных клеток.

Различают центральные и периферические органы кроветворения и иммунной защиты.

К центральным органам кроветворения и иммунной защиты у человека относятся красный костный мозг и тимус. В красном костном мозге образуются эритроциты, тромбоциты, гранулоциты и предшественники лимфоцитов. Тимус - центральный орган лимфопоэза.

В периферических кроветворных органах (селезенка, лимфатические узлы, гемолимфатические узлы) происходят размножение приносимых сюда из центральных органов Т- и В-лимфоцитов и специализация их под влиянием антигенов в эффекторные клетки, осуществляющие иммунную защиту, и клетки памяти (КП). Кроме того, здесь погибают клетки крови, завершившие свой жизненный цикл.

Органы кроветворения функционируют содружественно и обеспечивают поддержание морфологического состава крови и иммунного гомеостаза в организме. Координация и регуляция деятельности всех органов кроветворения осуществляются посредством гуморальных и нервных факторов организма, а также внутриорганных влияний, обусловленных микроокружением.

Несмотря на различия в специализации органов гемопоэза, все они имеют сходные структурно-функциональные признаки. В основе большинства их лежит , которая образует строму органов и выполняет роль специфического микроокружения для развивающихся гемопоэтических клеток и лимфоцитов. В этих органах происходят размножение кроветворных клеток , временное депонирование крови или лимфы. Кроветворные органы благодаря наличию в них специальных фагоцитирующих и иммунокомпетентных клеток осуществляют также защитную функцию и способны очищать кровь или лимфу от инородных частиц, бактерий и остатков погибших клеток.

Костный мозг

Костный мозг (medulla osseum , bone marrow ) - центральный кроветворный орган, в котором находится самоподдерживающаяся популяция стволовых кроветворных клеток (СКК) и образуются клетки как миелоидного, так и лимфоидного ряда.

Развитие

Костный мозг у человека появляется впервые на 2-м месяце внутриутробного периода в ключице эмбриона, затем на 3-4 -м месяце он образуется в развивающихся плоских костях, а также в трубчатых костях конечностей - лопатках, тазовых костях, затылочной кости, ребрах, грудине, костях основания черепа и позвонках, а в начале 4-го месяца развивается также в трубчатых костях конечностей. До 11-й недели это остеобластический костный мозг, который выполняет остеогенную функцию. В данный период костный мозг накапливает стволовые клетки, а клетки стромы с остеогенными потенциями создают микросреду, необходимую для дифференцировки стволовых кроветворных клеток. У 12-14-недельного эмбриона человека происходят развитие и дифференцировка вокруг кровеносных сосудов гемопоэтических клеток. У 20-28-недельного плода человека в связи с интенсивным разрастанием костного мозга отмечается усиленная резорбция костных перекладин остеокластами, в результате чего образуется костномозговой канал, а красный костный мозг получает возможность расти в направлении эпифизов. К этому времени костный мозг начинает функционировать как основной кроветворный орган, причем большая часть образующихся в нем клеток относится к эритроидному ряду гемопоэза.

У зародыша 36 нед развития в костном мозге диафиза трубчатых костей обнаруживаются жировые клетки. Одновременно появляются очаги кроветворения в эпифизах.

Строение

Во взрослом организме человека различают красный и желтый костный мозг.

Красный костный мозг

Красный костный мозг (medulla ossium rubra ) является кроветворной частью костного мозга. Он заполняет губчатое вещество плоских и трубчатых костей и во взрослом организме составляет в среднем около 4 – 5% общей массы тела. Красный костный мозг имеет темно-красный цвет и полужидкую консистенцию, что позволяет легко приготовить из него тонкие мазки на стекле. Он содержит стволовые кроветворные клетки (СКК) и диффероны гемопоэтических клеток эритроидного, гранулоцитарного и мегакариоцитарного ряда, а также предшественники В- и Т-лимфоцитов. Стромой костного мозга является ретикулярная соединительная ткань , образующая микроокружение для кроветворных клеток. В настоящее время к элементам микроокружения относят также остеогенные, жировые, адвентициальные, эндотелиальные клетки и макрофаги.

Ретикулярные клетки благодаря своей отростчатой форме выполняют механическую функцию, секретируют компоненты основного вещества - преколлаген, гликозаминогликаны, проэластин и микрофибриллярный белок и участвуют в создании кроветворного микроокружения, специфического для определенных направлений развивающихся гемопоэтических клеток, выделяя ростовые факторы.

Остеогенными клетками называют стволовые клетки опорных тканей, остеобласты и их предшественники. Остеогенные клетки входят в состав эндоста и могут быть в костномозговых полостях. Остеогенные клетки также способны вырабатывать ростовые факторы, индуцировать родоначальные гемопоэтические клетки в местах своего расположения к пролиферации и дифференцировке. Наиболее интенсивно кроветворение происходит вблизи эндоста, где концентрация стволовых клеток примерно в 3 раза больше, чем в центре костномозговой полости.

Адипоциты (жировые клетки) являются постоянными элементами костного мозга.

Адвентициальные клетки сопровождают кровеносные сосуды и покрывают более 50% наружной поверхности синусоидных капилляров. Под влиянием гемопоэтинов (эритропоэтин) и других факторов они способны сокращаться, что способствует миграции клеток в кровоток.

Эндотелиальные клетки сосудов костного мозга принимают участие в организации стромы и процессов кроветворения, синтезируют коллаген IV типа, гемопоэтины. Эндотелиоциты, образующие стенки синусоидных капилляров, непосредственно контактируют с гемопоэтическими и стромальными клетками благодаря прерывистой базальной мембране . Эндотелиоциты способны к сократительным движениям, которые способствуют выталкиванию клеток крови в синусоидные капилляры. После прохождения клеток в кровоток поры в эндотелии закрываются. Эндотелиоциты выделяют колониестимулирующие факторы (КСФ) и белок фибронектин , обеспечивающий прилипание клеток друг к другу и субстрату.

Макрофаги в костном мозге представлены неоднородными по структуре и функциональным свойствам клетками, но всегда богатыми лизосомами и фагосомами. Некоторые из популяций макрофагов секретируют ряд биологически активных веществ (эритропоэтин, колониестимулирующие факторы, интерлейкины, простагландины, интерферон и др.). Макрофаги при помощи своих отростков, проникающих через стенки синусов, улавливают из кровотока железосодержащее соединение (трансферрин) и далее передают его развивающимся эритроидным клеткам для построения геминовой части гемоглобина.

Межклеточное вещество - В костном мозге это вещество содержит коллаген II, III и IV типа, гликопротеины, протеогликаны и др.

Гемопоэтические клетки или кроветворные диффероны составляют паренхиму красного костного мозга.

Рассмотрим подребнее образование эритроцитов, гранулоцитов и тромбоцитов в красном костном мозге.

Эритроцитопоэз

Эритропоэз у млекопитающих и человека протекает в костном мозге в особых морфофункциональных ассоциациях, получивших название эритробластических островков. Эритробластический островок состоит из макрофага, окруженного эритроидными клетками. Эритроидные клетки развиваются из колониеобразующей эритроидной клетки (КОЕ-Э), вступившей в контакт с макрофагом костного мозга. КОЕэ и образующиеся из нее клетки - от проэритробласта до ретикулоцита - удерживаются в контакте с макрофагом его рецепторами - сиалоадгезинами.

Макрофаги служат своего рода «кормильцами» для эритробластов, способствуют накоплению в непосредственной близости от эритробластов и поступлению в них эритропоэтина, витаминов кроветворения (витамина D3), молекул ферритина. Макрофаги островков фагоцитируют ядра, вытолкнутые эритробластами при их созревании и способны повторно присоединять КОЕэ и формировать вокруг себя новый очаг эритропоэза.

По мере созревания эритробласты отделяются от островков и после удаления ядра (энуклеации) проникают через стенку венозных синусов в кровоток. Стенки синусов состоят из эндотелиальных уплощенных клеток, пронизанных щелевидными отверстиями, или порами, в которые проникают форменные элементы крови и плазма. Среди эндотелиальных клеток есть фиксированные макрофаги.

Гранулоцитопоэз

Гранулоцитопоэтические клетки также образуют островки, главным образом по периферии костномозговой полости. Незрелые клетки гранулоцитарных рядов окружены протеогликанами. В процессе созревания гранулоциты депонируются в красном костном мозге, где их насчитывается примерно в 3 раза больше, чем эритроцитов, и в 20 раз больше, чем гранулоцитов в периферической крови.

Тромбоцитопоэз

«Гиганты красного костного мозга дают карликов крови» - Мегакариобласты и мегакариоциты располагаются в тесном контакте с синусами так, что периферическая часть их цитоплазмы проникает в просвет сосуда через поры. Отделение фрагментов цитоплазмы в виде тромбоцитов (кровяных пластинок) происходит непосредственно в кровяное русло.

Лимфоцитопоэз и моноцитопоэз

Среди островков клеток миелоидного ряда встречаются небольшие скопления костномозговых лимфоцитов и моноцитов, которые окружают кровеносный сосуд.

В обычных физиологических условиях через стенку синусов костного мозга проникают лишь созревшие форменные элементы крови. Миелоциты и эритробласты попадают в кровь только при патологических состояниях организма. Причины такой избирательной проницаемости стенки сосудов остаются недостаточно ясными, но факт проникновения незрелых клеток в кровяное русло всегда служит верным признаком расстройства костномозгового кроветворения.

Желтый костный мозг

Желтый костный мозг (medulla ossium flava ) у взрослых находится в диафизах трубчатых костей. В его составе находятся многочисленные жировые клетки (адипоциты).

Благодаря наличию в жировых клетках пигментов типа липохромов костный мозг в диафизах имеет желтый цвет, что и определяет его название. В обычных условиях желтый костный мозг не осуществляет кроветворной функции, но в случае больших кровопотерь или при некоторых патологических состояниях организма в нем появляются очаги миелопоэза за счет дифференцировки приносимых сюда с кровью стволовых и полустволовых клеток крови.

Резкой границы между желтым и красным костным мозгом не существует. Небольшое количество адипоцитов постоянно встречается и в красном костном мозге. Соотношение желтого и красного костного мозга может меняться в зависимости от возраста, условий питания, нервных, эндокринных и других факторов.

Васкуляризация. Иннервация. Возрастные изменения. Регенерация.

Васкуляризация . Костный мозг снабжается кровью посредством сосудов, проникающих через надкостницу в специальные отверстия в компактном веществе кости. Войдя в костный мозг, артерии разветвляются на восходящую и нисходящую ветви, от которых радиально отходят артериолы. Сначала они переходят в узкие капилляры (2-4 мкм), а затем в области эндоста продолжаются в широкие тонкостенные с щелевидными порами синусы (диаметром 10-14 мкм). Из синусов кровь собирается в центральную венулу. Постоянное зияние синусов и наличие щелей в эндотелиальном пласте обусловливаются тем, что в синусах гидростатическое давление несколько повышено, так как диаметр выносящей вены меньше по сравнению с диаметром артерии. К базальной мембране с наружной стороны прилежат адвентициальные клетки, которые, однако, не образуют сплошного слоя, что создает благоприятные условия для миграции клеток костного мозга в кровь. Меньшая часть крови проходит со стороны периоста в каналы остеонов, а затем в эндост и синус. По мере контакта с костной тканью кровь обогащается минеральными солями и регуляторами кроветворения.

Кровеносные сосуды составляют половину (50%) массы костного мозга, из них 30% приходится на синусы. В костном мозге разных костей человека артерии имеют толстую среднюю и адвентициальную оболочки, многочисленные тонкостенные вены, причем артерии и вены редко идут вместе, чаще врозь. Капилляры бывают двух типов: узкие 6-20 мкм и широкие синусоидные (или синусы) диаметром 200-500 мкм. Узкие капилляры выполняют трофическую функцию, широкие являются местом дозревания эритроцитов и выхода в кровоток разных клеток крови. Капилляры выстланы эндотелиоцитами, лежащими на прерывистой базальной мембране.

Иннервация . В иннервации участвуют нервы сосудистых сплетений, нервы мышц и специальные нервные проводники к костному мозгу. Нервы проникают в костный мозг вместе с кровеносными сосудами через костные каналы. Далее покидают их и продолжаются как самостоятельные веточки в паренхиме в пределах ячеек губчатого вещества кости. Они ветвятся на тонкие волоконца, которые либо вновь вступают в контакт с костномозговыми сосудами и оканчиваются на их стенках, либо заканчиваются свободно среди клеток костного мозга.

Возрастные изменения . Красный костный мозг в детском возрасте заполняет эпифизы и диафизы трубчатых костей и находится в губчатом веществе плоских костей. Примерно в 12-18 лет красный костный мозг в диафизах замещается желтым. В старческом возрасте костный мозг (желтый и красный) приобретает слизистую консистенцию и тогда называется желатинозным костным мозгом. Следует отметить, что этот вид костного мозга может встречаться и в более раннем возрасте, например при развитии костей черепа и лица.

Регенерация . Красный костный мозг обладает высокой физиологической и репаративной регенерационной способностью. Источником образования гемопоэтических клеток являются стволовые клетки, находящиеся в тесном взаимодействии с ретикулярной стромальной тканью. Скорость регенерации костного мозга в значительной мере связана с микроокружением и специальными ростстимулирующими факторами гемопоэза.

Некоторые термины из практической медицины:

    миелограмма (миело- + греч. gramma запись) -- выраженный в форме таблицы или диаграммы результат микроскопии мазка пунктата костного мозга, отражающий качественный и количественный состав ядросодержащих клеток миелоидной ткани.;

    миелоидная реакция (миело- + греч. -eides подобный) -- появление в периферической крови малодифференцированных клеток, относящихся к грануло- и эритропоэтическому ряду; наблюдается при метастазах злокачественной опухоли в костный мозг, а также при сепсисе, туберкулезе и некоторых других болезнях;

    остеомиелит (osteomyelitis ; остео- + греч. myelos костный мозг + ит; син.: костоеда -- устар., паностит) -- воспаление костного мозга, обычно распространяющееся на компактное и губчатое вещество кости и надкостницу;

Органы кроветворения и иммунной защиты

Часть вторая – Вилочковая железа (Тимус).

Вилочковая железа, или тимус (thymus - греч. thymos = 1. тимьян; 2. душа, настроение, чувство), - центральный орган лимфоцитопоэза и иммуногенеза. Из костномозговых предшественников Т-лимфоцитов в нем происходит их антигенНЕзависимая дифференцировка в Т-лимфоциты, разновидности которых осуществляют реакцииклеточного иммунитета и регулируют реакции гуморального иммунитета.

Удаление тимуса (тимэктомия) у новорожденных животных вызывает резкое угнетение пролиферации лимфоцитов во всех лимфатических узелках кроветворных органов, исчезновение малых лимфоцитов из крови, резкое уменьшение количества лейкоцитов и другие характерные признаки (атрофия органов, кровоизлияния и пр.). При этом организм оказывается весьма чувствительным ко многим инфекционным заболеваниям, не отторгает чужеродные трансплантаты органов.

Развитие . Тимус является эпителиальным органом, развивается из энтодермы.

Закладка тимуса у человека происходит в конце первого месяца внутриутробного развития из эпителия глоточной кишки, в области главным образом III и IV пар жаберных карманов в виде тяжей многослойного эпителия. Дистальная часть зачатков III пары, утолщаясь, образует тело тимуса, а проксимальная вытягивается, подобно выводному протоку экзокринной железы. В дальнейшем тимус обособляется от жаберного кармана. Правый и левый зачатки сближаются и срастаются. На 7-й неделе развития в эпителиальной строме тимуса человека появляются первые лимфоциты. На 8-11-й неделе врастающая в эпителиальную закладку органа мезенхима с кровеносными сосудами подразделяет закладку тимуса на дольки. На 11-12-й неделе развития эмбриона человека происходит дифференцировка лимфоцитов, а на поверхности клеток появляются специфические рецепторы и антигены. На 3-м месяце происходит дифференцировка органа на мозговую и корковую части, они инфильтрируются лимфоцитами и первоначальная типичная эпителиальная структура зачатка становится трудноразличимой. Эпителиальные клетки раздвигаются и остаются связанными друг с другом только межклеточными мостиками, приобретая вид рыхлой сети. В строме мозгового вещества появляются своеобразные структуры - так называемые слоистые эпителиальные тельца (по имени автора – тельца Гассаля).

Образующиеся в результате митотического деления Т-лимфоциты мигрируют затем в закладки лимфатических узлов (в их т.н. тимусзависимые зоны) и другие периферические лимфоидные органы.

В течение 3-5 мес наблюдаются дифференцировка стромальных клеток и появление разновидностей Т-лимфоцитов - киллеров, супрессоров и хелперов, способных продуцировать лимфокины. Формирование тимуса завершается к 6-му месяцу, когда эпителиоциты органа начинают секретировать гормоны, а вне тимуса появляются дифференцированные формы - Т-киллеры, Т-супрессоры, Т-хелперы.

В первые 2 недели после рождения наблюдаются массовое выселение Т-лимфоцитов из тимуса и резкое повышение активности внетимусных лимфоцитов. К моменту рождения масса тимуса равна 10-15 г. В период половой зрелости организма его масса максимальна - 30-40 г, а далее наступает обратное развитие - возрастная инволюция .

Строение

Снаружи вилочковая железа покрыта соединительнотканной капсулой. От нее внутрь органа отходят перегородки, разделяющие железу на дольки. В каждой дольке различают корковое и мозговое вещество. В основе органа лежит эпителиальная ткань , состоящая из отростчатых клеток - эпителиоретикулоцитов . Для всех эпителиоретикулоцитов характерно наличие десмосом, тонофиламентов и белков кератинов, продуктов главного комплекса гистосовместимости на своих мембранах.

Эпителиоретикулоциты в зависимости от локализации отличаются формой и размерами, тинкториальными признаками, плотностью гиалоплазмы, содержанием органелл и включений. Описаны секреторные клетки коры и мозгового вещества, несекреторные (или опорные) и клетки эпителиальных слоистых телец - телец Гассаля (гассалевы тельца).

Секреторные клетки вырабатывают регулирующие гормоноподобные факторы: тимозин, тимулин, тимопоэтины. Эти клетки содержат вакуоли или секреторные включения.

Эпителиальные клетки в субкапсулярной зоне и наружной коре имеют глубокие инвагинации, в которых расположены, как в колыбели, лимфоциты. Прослойки цитоплазмы этих эпителиоцитов - «кормилок» или «нянек» между лимфоцитами могут быть очень тонкими и протяженными. Обычно такие клетки содержат 10- 20 лимфоцитов и более.

Лимфоциты могут входить и выходить из инвагинаций и образовывать плотные контакты с этими клетками. Клетки-«няньки» способны продуцировать а-тимозин.

Кроме эпителиальных клеток, различают вспомогательные клетки. К ним относятся макрофаги и дендритные клетки. Они содержат продукты главного комплекса гистосовместимости, выделяют ростовые факторы (дендритные клетки), влияющие на дифференцировку Т-лимфоцитов.

Корковое вещество (cortex ) - периферическая часть долек тимуса содержит Т-лимфоциты, которые густо заполняют просветы сетевидного эпителиального остова. В подкапсулярной зоне коркового вещества находятся крупные лимфоидные клетки - Т-лимфобласты, мигрировавшие сюда из красного костного мозга . Они под влиянием тимозина, выделяемого эпителиоретикулоцитами, пролиферируют. Новые генерации лимфоцитов появляются в тимусе каждые 6-9 ч. Полагают, что Т-лимфоциты коркового вещества мигрируют в кровоток, не входя в мозговое вещество. Эти лимфоциты отличаются по составу рецепторов от Т-лимфоцитов мозгового вещества. С током крови они попадают в периферические органы лимфоцитопоэза - лимфатические узлы и селезенку , где созревают в субклассы: антигенреактивные киллеры, хелперы, супрессоры. Однако не все образующиеся в тимусе лимфоциты выходят в циркуляторное русло, а лишь те, которые прошли «обучение» и приобрели специфические циторецепторы к чужеродным антигенам. Лимфоциты, имеющие циторецепторы к собственным антигенам, как правило, погибают в тимусе, что служит проявлением отбора иммунокомпетентных клеток. При попадании таких Т-лимфоцитов в кровоток развивается аутоиммунная реакция.

Клетки коркового вещества определенным образом отграничены от кровигематотимусным барьером , предохраняющим дифференцирующиеся лимфоциты коркового вещества от избытка антигенов. В его состав входят эндотелиальные клетки гемокапилляров с базальной мембраной, перикапиллярное пространство с единичными лимфоцитами, макрофагами и межклеточным веществом, а также эпителиоретикулоциты с их базальной мембраной. Барьер обладает избирательной проницаемостью по отношению к антигену. При нарушении барьера среди клеточных элементов коркового вещества обнаруживаются также единичные плазматические клетки, зернистые лейкоциты и тучные клетки. Иногда в корковом веществе появляются очаги экстрамедуллярного миелопоэза .

Мозговое вещество (medulla ) дольки тимуса на гистологических препаратах имеет более светлую окраску, так как по сравнению с корковым веществом содержит меньшее количество лимфоцитов. Лимфоциты этой зоны представляют собой рециркулирующий пул Т-лимфоцитов и могут поступать в кровь и выходить из кровотока через посткапиллярные венулы.

Количество митотически делящихся клеток в мозговом веществе примерно в 15 раз меньше, чем в корковом. Особенностью ультрамикроскопического строения отростчатых эпителиоретикулоцитов является наличие в цитоплазме гроздевидных вакуолей и внутриклеточных канальцев, поверхность которых образует микровыросты.

В средней части мозгового вещества расположены слоистые эпителиальные тельца (corpusculum thymicum ) – тельца Гассаля. Они образованы концентрически наслоенными эпителиоретикулоцитами, цитоплазма которых содержит крупные вакуоли, гранулы кератина и пучки фибрилл. Количество этих телец у человека увеличивается к периоду половой зрелости, затем уменьшается. Функция телец не установлена.

Васкуляризация . Внутри органа артерии ветвятся на междольковые и внутридольковые, которые образуют дуговые ветви. От них почти под прямым углом отходят кровеносные капилляры, образующие густую сеть, особенно в корковой зоне. Капилляры коркового вещества окружены непрерывной базальной мембраной и слоем эпителиальных клеток, отграничивающим перикапиллярное пространство. В перикапиллярном пространстве, заполненном тканевой жидкостью, встречаются лимфоциты и макрофаги. Большая часть корковых капилляров переходит непосредственно в подкапсулярные венулы. Меньшая часть идет в мозговое вещество и на границе с корковым веществом переходит в посткапиллярные венулы, отличающиеся от капсулярных венул высоким призматическим эндотелием. Через этот эндотелий могут рециркулировать (уходить из вилочковой железы и вновь возвращаться) лимфоциты. Барьера вокруг капилляров в мозговом веществе нет.

Таким образом, отток крови из коркового и мозгового вещества происходит самостоятельно.

Лимфатическая система представлена глубокой (паренхиматозной) и поверхностной (капсулярной и подкапсулярной) выносящей сетью капилляров. Паренхиматозная капиллярная сеть особенно богата в корковом веществе, а в мозговом капилляры обнаружены вокруг эпителиальных слоистых телец. Лимфатические капилляры собираются в сосуды междольковых перегородок, идущие вдоль кровеносных сосудов.

Возрастные изменения

Тимус достигает максимального развития в раннем детском возрасте. В период от 3 до 18 лет отмечается стабилизация его массы. В более позднее время происходит обратное развитие (возрастная инволюция) тимуса. Это сопровождается уменьшением количества лимфоцитов, особенно в корковом веществе, появлением липидных включений в соединительнотканных клетках и развитием жировой ткани. Слоистые эпителиальные тельца сохраняются гораздо дольше.

В редких случаях тимус не претерпевает возрастной инволюции (status thymicolymphaticus ). Обычно это сопровождается дефицитом глюкокортикоидов коры надпочечников. Такие люди отличаются пониженной сопротивляемостью инфекциям и интоксикациям. Особенно увеличивается риск заболеваний опухолями.

Быстрая, или акцидентальная, инволюция может наступить в связи с воздействием на организм различных чрезвычайно сильных раздражителей (напрмер, - травма, интоксикация, инфекция, голодание и др.). При стресс-реакции происходят выброс Т-лимфоцитов в кровь и массовая гибель лимфоцитов в самом органе, особенно в корковом веществе. В связи с этим становится менее заметной граница коркового и мозгового вещества. Кроме лимфоцитолиза, наблюдается фагоцитоз макрофагами внешне не измененных лимфоцитов. Биологический смысл лимфоцитолиза окончательно не установлен. Вероятно, гибель лимфоцитов является выражением селекции Т-лимфоцитов.

Одновременно с гибелью лимфоцитов происходит разрастание эпителиоретикулоцитов органа. Эпителиоретикулоциты набухают, в цитоплазме появляются секретоподобные капли, дающие положительную реакцию на гликопротеиды. В некоторых случаях они скапливаются между клетками, образуя подобие фолликулов.

Тимус вовлекается в стресс-реакции вместе с надпочечниками . Увеличение в организме количества гормонов коры надпочечника, в первую очередь глюкокортикоидов, вызывает очень быструю и сильную акцидентальную инволюцию тимуса.

- (ЖЕЛЕЗЫ, СОСУДЫ), система щелей, каналов, сосудов и специальных образований (лимфатич. желез) по ходу их, отводящих из тканей т. н. лимфу (см.). Понятие Л. с. включает в себя также нек рые образования из аденоидной ткани (см.). Сюда принадлежат… …

Действующее вещество ›› Тестостерон* (Testosterone*) Латинское название Nebido АТХ: ›› G03BA03 Тестостерон Фармакологическая группа: Андрогены, антиандрогены Нозологическая классификация (МКБ 10) ›› E23.0 Гипопитуитаризм ›› E29 Дисфункция яичек… …

ЛЕЙКЕМИЯ - ЛЕЙКЕМИЯ, (leukaemia; Virchow, 1845), системное заболевание кроветворного аппарата, имеющее в основе гиперпластическое разрастание лимфаденоидной или мие лоидной ткани или рет. энд. ткани и сопровождающееся увеличением в крови количества белых… … Большая медицинская энциклопедия

Период жизни с 6 7 до 17 18 лет. Условно выделяют младший Ш. в. (до 11 лет) и старший Ш. в. (с 12 лет), который обычно называют подростковым возрастом, или периодом полового созревания. В связи с индивидуальными колебаниями сроков полового… … Медицинская энциклопедия

Период развития ребенка от 4 нед. до 3 лет. Условно подразделяется на младший ясельный, или грудной, возраст от 4 нед. до 1 года (см. Грудной ребенок (Грудной ребёнок)) и старший ясельный, или преддошкольный, от 1 года до 3 лет. Я. в.… … Медицинская энциклопедия

Действующее вещество ›› Циклоспорин* (Ciclosporin*) Латинское название Ciclosporin HEXAL АТХ: ›› L04AD01 Циклоспорин Фармакологическая группа: Иммунодепрессанты Нозологическая классификация (МКБ 10) ›› H20 Иридоциклит ›› L20 Атопический дерматит… … Словарь медицинских препаратов

Период развития ребенка от 3 до 6 7 лет. В эти годы происходят дальнейшее физическое развитие и совершенствование интеллектуальных возможностей ребенка. Рост и масса тела. Рост детей в Д. в. увеличивается неравномерно вначале до 4 6 см в год, а… … Медицинская энциклопедия

Действующее вещество ›› Левомепромазин* (Levomepromazine*) Латинское название Tisercin АТХ: ›› N05AA02 Левомепромазин Фармакологическая группа: Нейролептики Нозологическая классификация (МКБ 10) ›› F20 Шизофрения ›› F29 Неорганический психоз… … Словарь медицинских препаратов

Изменения, вызываемые в жизнедеятельности и структуре живых организмов при воздействии коротковолновых электромагнитных волн (рентгеновского излучения и гамма излучения (См. Гамма излучение)) или потоков заряженных частиц (альфа частиц… … Большая советская энциклопедия

Действующее вещество ›› Флуцитозин* (Flucytosine*) Латинское название Ancotil АТХ: ›› J02AX01 Флуцитозин Фармакологическая группа: Противогрибковые средства Нозологическая классификация (МКБ 10) ›› B37.7 Кандидозная септицемия ›› B43.9 Хромомикоз … Словарь медицинских препаратов

Книги

  • Всё о крови. Кроветворная система , Александр Куренков , Кровь… Так что же это такое? Всё зависит от точки зрения. Для графа Дракулы и прочих вампиров – пища. Для поэта – то, что по капле отдают за жизнь любимой. Для криминалиста – улика. Ну а с… Категория:

Органы кроветворения и иммуногенеза включают красный костный мозг, тимус, лимфатические узлы, селезенку, миндалины, агрегированные лимфоидные узелки кишки (пейеровы бляшки), лимфоидную ткань червеобразного отростка, а также другие лимфоидные образования пищеварительного тракта, половых, дыхательной и выделительной систем (лимфоидная ткань, ассоциированная со слизистыми оболочками).

Помимо структур органного характера, к иммунной системе относятся многочисленные диффузные скопления лимфоидной ткани и рассеянные повсеместно в организме лимфоциты, макрофаги и антиген-представляющие клетки, а также лимфоциты и моноциты крови и лимфы.

Функции органов кроветворения и иммуногенеза: участие во взаимосвязанных процессах кроветворения и иммуногенеза, обеспечивающего защиту от микроорганизмов, чужеродных антигенов, иммунный надзор за деятельностью клеток собственного организма.

Классификация органов иммунной системы. Созревание иммунокомпетентных клеток в организме связано с их взаимодействием с другими типами клеток и поэтапной миграцией. Органы иммунной системы в зависимости от роли в этом процессе разделяются на центральные и периферические.

Центральные (первичные) органы иммунной системы (красный костный мозг, тимус) обеспечивают процессы антиген-независимой пролиферации и дифференцировки лимфоцитов. При этом образуются В- и Т-лимфоциты с огромным репертуаром рецепторов к всевозможным антигенам. Такое разнообразие обусловлено реаранжировкой их генома; антигены на этом этапе не только не нужны, но даже вредны. Из центральных органов иммунной системы лимфоциты мигрируют в периферические органы, распределяясь в зависимости от их типа, по Т- и В-зависимым зонам.

Периферические (вторичные) органы иммунной системы (все остальные органы иммунной системы) расположены на путях поступления антигенов через лимфу или кровь. Они обеспечивают контакт лимфоцитов с антигенами и связанные с этим процессы антиген-зависимой пролиферации и дифференцировки лимфоцитов.

Красный костный мозг

Красный костный мозг представляет собой центральный орган кроветворения и иммуногенеза, содержащий самоподдерживающуюся популяцию

стволовых клеток крови и участвующий в образовании клеток миелоцитарного (эритроциты, тромбоциты, гранулоциты, моноциты) и лимфоцитарного рядов. В нем осуществляется антиген-независимая пролиферация и дифференцировка В-лимфоцитов из их предшественников, происходящих из стволовой клетки крови. Из него в тимус попадают предшественники Т-лимфоцитов (претимоциты).

У взрослого красный костный мозг находится в ячейках губчатого вещества костей (в плоских костях и эпифизах трубчатых костей), у детей - также и в диафизах трубчатых костей. В состав красного костного мозга входят три компонента: 1) гемопоэтический, 2) стромальный, 3) сосудистый (рис. 157 и 158).

1) Гемопоэтический компонент образован скоплениями кроветворных клеток миелоцитарного и лимфоцитарного рядов (взаимодействующих со стромальными элементами) и занимает пространства между эндостом и кровеносными сосудами - синусоидами. В нем содержится самоподдерживающаяся популяция плюрипотентных стволовых клеток крови (гемопоэтических стволовых клеток). Эритроидные элементы развиваются в составе эритробластических островков в контакте с ретикулярными клетками, которые накапливают и передают им частицы железа, необходимого для синтеза гемоглобина (см. рис. 158). Гранулоциты созревают вблизи клеток эндоста и контактируют с ретикулярными клетками и преадипоцитами, мегакариоциты всегда лежат вблизи синусов, в которые они выделяют тромбоциты.

Лимфоциты составляют 20% клеток красного костного мозга, из них 3/4 приходятся на развивающиеся и зрелые В-лимфоциты; встречаются также Т- и НК-клетки. В ходе созревания В-лимфоциты контактируют с клетками эндоста, ретикулярными клетками и концентрируются возле синусоидов, в просвет которых они мигрируют по его завершении. При дифференцировке в геноме В-клеток происходит реаранжировка, которая обеспечивает образование на их поверхности иммуноглобулиновых рецепторов к разнообразным антигенам. Созревшие В-клетки покидают костный мозг и заселяют В-зависимые зоны периферических органов иммунной системы. Большая часть (75%) В-лимфоцитов, образовавшихся в костном мозгу, здесь же погибают механизмом апоптоза в процессе отбора, включающего положительную селекцию (выживание клеток с нужными рецепторами) и отрицательную селекцию (гибель клеток с рецепторами к собственным антигенам). Погибшие клетки захватываются макрофагами.

2)Стромальный компонент выполняет опорную, трофическую и регуляторную функции, создает особое микроокружение для нормального развития кроветворных клеток. Он включает: ретикулярные клетки отростчатой формы и волокна, образующие трехмерную сеть (часть ретикулярных клеток, прилежащих к стенке синусоидов, называют адвентициальными клетками); адипоциты (жировые клетки); макрофаги (фагоцитируют погибшие клетки); клетки эндоста (соединительнотканной выстилки костных полостей). В состав стромального компонента входят плюрипотентные стромальные стволовые клетки, называемые также (неточно) мезенхимными стволовыми клетками. Эти клетки циркулируют в крови и в различных тканях под влиянием факторов локального микроокружения дают начало ряду клеток соединительной ткани - фибробластам, хондробластам, остеобластам, жировым клеткам. Костомозговые стромальные стволовые клетки имеют небольшие размеры и морфологически напоминают фибробласты. Их идентификация требует использования совокупности иммуноцитохимических маркеров.

3)Сосудистый компонент наряду с обычными сосудами микроциркуляторного русла содержит синусоиды (венулярные синусы) - тонкостенные широкие анастомозирующие сосуды, выстланные тонким эндотелием, через который в просвет синуса сквозь временно образующиеся в цитоплазме клеток поры поступают зрелые форменные элементы крови. Снаружи к синусоидам прилегают макрофаги, ретикулярные клетки (см. рис. 158).

Недавно установлено, что красный костный мозг содержит также популяцию эндотелиальных клеток-предшественников, которые мобилизуются из него в кровоток и привлекаются в участки повреждения эндотелия и ишемии тканей, участвуя в регенерации эндотелия и образовании новых сосудов. Точная локализация этих клеток внутри костного мозга не установлена, вероятно, они располагаются в сосудистом компоненте, поскольку в эмбриональном развитии эндотелиальные и кроветворные клетки развиваются из общего источника - кровяных островков в мезенхиме.

Тимус

Тимус - центральный орган иммунной системы, в котором происходит антиген-независимая пролиферация и дифференцировка Т-лимфоцитов из их предшественников, поступающих из красного костного мозга. Наибольшего развития достигает в детстве, после полового созревания подвергается возрастной инволюции, в ходе которой значительная часть его массы замещается жировой тканью.

Тимус образован двумя долями, покрытыми снаружи соединительнотканной капсулой, которая продолжается в перегородки, содержащие сосуды и разделяющие каждую долю на связанные друг с другом дольки тимуса (рис. 159). Основу дольки составляют отростчатые ретикулярные эпителиоциты (эпителиальные ретикулярные клетки), образующие трехмерную сеть в корковом и мозговом веществе (корковый и мозговой циторетикулюм). Ретикулярные эпителиоциты создают микроокружение, необходимое для развития лимфоцитов (тимоцитов), лежащих в петлях образуемой ими сети.

Корковое вещество (кора) тимуса - более темное вследствие плотного расположения тимоцитов. В него из красного костного мозга поступают предшественники Т-клеток (претимоциты). Пролиферирующие тимоциты располагаются в виде скоплений между эпителиальными клетками в субкортикальной зоне. Созревающие тимоциты, продолжая делиться и смещаясь в более глубокие части коры, становятся иммунокомпетентными клетками. Подавляющее их большинство гибнут механизмом апоптоза в процессе селекции (отбора), а их фрагменты уничтожаются макрофагами. Развитие тимоцитов в коре тимуса происходит в отсутствие чужеродных антигенов, поступление которых из крови блокируется гемато-тимусным барьером. Основным элементом этого барьера служат уплощенные отростки периваскулярных ретикулярных эпителиоцитов, охватывающие капилляры коркового вещества тимуса. Наиболее зрелые Т-клетки перемещаются в мозговое вещество.

Мозговое вещество тимуса - светлее коркового, содержит меньшее количество более зрелых тимоцитов, которые покидают тимус через посткапиллярные венулы в кортико-медуллярной зоне и заселяют Т-зависимые зоны периферических органов иммунной системы. В отдельных участках мозгового вещества эпителиальные клетки уплощаются, ороговевают и накладываются друг на друга концентрическими слоями, образуя слоистые эпителиальные тимусные тельца (Гассаля)

(рис. 160).

Лимфатические узлы

Лимфатические узлы - периферические органы иммунной системы, располагающиеся по ходу лимфатических сосудов. Снаружи они покрыты соединительнотканной капсулой; к их выпуклой поверхности подходят приносящие лимфатические сосуды, в области ворот на вогнутой поверхности входят артерии и нервы и выходят выносящий лимфатический сосуд и вены (рис. 161). От соединительнотканной капсулы вглубь органа отходят трабекулы. Строма

узлов образована трехмерной сетью ретикулярных клеток, коллагеновых и ретикулярных волокон, а также макрофагами и антиген-представляющими клетками. В ее петлях располагаются элементы лимфоцитарного ряда. В каждом узле можно выделить корковое и мозговое вещество (см. рис. 161 и 162).

Корковое вещество (кора) лимфатического узла состоит из наружной коры и глубокой коры (паракортикальной области), содержащих участки с преимущественным расположением Т- или В-лимфоцитов (Т- и В-зависимые зоны) соответственно.

Наружная кора представлена лимфоидной тканью, которая образует лимфоидные узелки и межузелковые скопления (диффузную часть), а также особые лимфатические сосуды - синусы, располагающиеся под капсулой и по ходу трабекул.

Лимфоидный узелок является В-зависимой зоной и представляет собой сферическое скопление лимфоидной ткани, наружную границу которого образует слой уплощенных ретикулярных клеток. Различают первичные и вторичные узелки.

Первичные лимфоидные узелки встречаются в лимфатических узлах лишь в отсутствие антигенных воздействий и представляют собой преимущественно компактные однородные скопления малых В-лимфоцитов. Под влиянием антигенов они превращаются во вторичные.

Вторичные лимфоидные узелки представляют собой участки образования В-клеток памяти и плазматических клеток. Они состоят из короны и герминативного центра (см. рис.162).

Корона - скопление малых лимфоцитов на периферии узелка полулунной формы, многослойное на субкапсулярном полюсе и истончающееся до нескольких клеток на мозговом. Содержит В-лимфоциты, а также незрелые плазматические клетки, мигрирующие из области своего образования в герминативном центре.

Герминативный центр развивается только под влиянием антигенной стимуляции вследствие Т-зависимого процесса. В нем происходит антиген-зависимая пролиферация и дифференцировка В-клеток в незрелые плазматические клетки и В-клетки памяти в результате их взаимодействия с антигеном, фолликулярно-дендритными клетками (захватывающими и накапливающими иммунные комплексы), Т-лимфоцитами (хелперами и супрессорами).

Межузелковые скопления лимфоидной ткани (диффузная часть) представляет собой Т-зависимую зону, продолжающуюся в паракортикальную область. Они содержат малые лимфоциты и макрофаги; при антигенной стимуляции эти скопления почти полностью исчезают, замещаясь лимфоидными узелками.

Глубокая кора (паракортикальная область) представляет собой Т-зависимую зону лимфатического узла, в которой осуществляются антиген-зависимая пролиферация и дифференцировка Т-лимфоцитов, поступивших из тимуса, с формированием различных субпопуляций. Она образована диффузной лимфоидной тканью, представленной Т-клетками, лежащими в петлях ретикулярной ткани и взаимодействующими с особым видом антиген-представляющих клеток - интердигитирующими клетками. Встречаются также плазматические клетки, мигрирующие из узелков в мозговое вещество. В этой области располагаются лимфатические синусы (промежуточные) и особые посткапиллярные венулы с высоким эндотелием, окруженные концентрическими слоями ретикулярных клеток. Благодаря экспрессии адгезивных молекул на поверхности эндотелиоцитов, взаимодействующих с хоумингрецепторами Т- и В-клеток, через стенку этих венул происходит миграция лимфоцитов из кровеносного русла в лимфатический узел.

Мозговое вещество образовано ветвящимися и анастомозирующими тяжами лимфоидной ткани (мозговыми тяжами), которые являются В-зависимой зоной и содержат многочисленные плазматические клетки, а также В-лимфоциты и макрофаги. Между мозговыми тяжами располагаются соединительнотканные трабекулы и широкие лимфатические синусы.

Лимфатические синусы - система особых внутриорганных лимфатических сосудов в корковом и мозговом веществе, обеспечивающая медленный ток лимфы через узел, в процессе которого она очищается от содержащихся в ней частиц (с извлечением антигенного материала) и обогащается антителами, клетками лимфоидного ряда и макрофагами.

Синусы выстланы плоскими береговыми клетками, которые, по одним данным, являются эндотелиальными, по другим - уплощенными ретикулярными. В просвете синуса находится сеть отростчатых ретикулярных клеток и волокон (замедляющая ток лимфы) с фиксированными на них и блуждающими макрофагами; имеются также многочисленные лимфоциты, плазматические клетки. Субкапсулярный (краевой) синус - щелевидное пространство между капсулой узла и наружной корой, располагается между трабекулами и лимфоидной тканью наружной и глубокой коры, мозговой синус продолжает промежуточный и лежит между трабекулами и мозговыми тяжами, воротный синус располагается в воротах узла.

Направление лимфотока в лимфатическом узле (см. рис. 161): приносящие лимфатические сосуды

субкапсулярный (краевой) синус межузелковый (промежуточный корковый) синус мозговой синус воротный синус выносящий лимфатический сосуд.

Селезенка

Селезенка - периферический орган иммунной системы, располагающийся по ходу кровеносных сосудов. Помимо участия в формировании гуморального и клеточного иммунитета, она участвует в разрушении старых и поврежденных эритроцитов, а также в депонировании крови.

Селезенка покрыта брюшиной (серозной оболочкой) и капсулой из плотной соединительной ткани, содержащей гладкие мышечные клетки, от которой вглубь органа отходят трабекулы, анастомозирующие друг с другом. Строму селезенки образует ретикулярная ткань. В паренхиме (пульпе селезенки) содержатся два отдела с разными функциями: белая пульпа и красная пульпа (рис. 163).

Белая пульпа селезенки представлена лимфоидной тканью, расположенной по ходу артерий (см. рис. 163), и включает (1) лимфоидные узелки (2) периартериолярные лимфоидные муфты и (3) маргинальную зону. В белой пульпе происходят процессы взаимодействия лимфоцитов с захваченными из крови антигенами, антиген-представляющими клетками и друг с другом, с развитием антиген-зависимой пролиферации и дифференцировки.

Лимфоидные узелки по своей структурно-функциональной организации сходны с аналогичными образованиями в лимфатических узлах и являются В-зависимой зоной в селезенке.

Периартериолярные лимфоидные муфты окружают центральные артериолы (артерии), состоят из цилиндрических компактных скоплений лимфоидной ткани, содержащей лимфоциты, макрофаги, ретикулярные и антиген-представляющие интердигитирующие клетки. Являются Т-зависимой зоной селезенки.

Маргинальная зона (рис. 164) располагается в виде тонкого слоя лимфоидной ткани к периферии от периартериолярных лимфоидных муфт и узелков на границе белой и красной пульпы; она служит местом начального поступления в белую пульпу селезенки Т- и В-клеток (направляющихся в даль-

нейшем в соответствующие зоны) и антигенов, которые здесь захватываются макрофагами.

Красная пульпа селезенки занимает большую часть ее объема и включает венозные синусоиды селезенки и селезеночные тяжи, или тяжи красной пульпы (Бильрота). В красной пульпе происходит депонирование зрелых форменных элементов крови, разрушение старых и поврежденных эритроцитов и тромбоцитов, фагоцитоз инородных частиц, дозревание лимфоидных клеток и превращение моноцитов в макрофаги.

Синусоиды селезенки - тонкостенные анастомозирующие венозные сосуды неправильной формы, образующие основную часть красной пульпы. Они выстланы веретенообразными эндотелиальными клетками с узкими щелями между ними, через которые в просвет синусов из окружающих тяжей мигрируют форменные элементы.

Селезеночные тяжи - скопления форменных элементов крови, макрофагов и плазматических клеток, лежащие в петлях ретикулярной ткани между синусоидами. Старые или патологически измененные форменные элементы (в первую очередь, эритроциты) фагоцитируются и перевариваются макрофагами.

Кровообращение в селезенке обладает рядом особенностей и включает две системы - открытую и закрытую (см. рис. 164). В трабекулах селезенки располагаются трабекулярные артерии - ветви селезеночной артерии. Они продолжаются в пульпу (артерии красной пульпы), где окружаются периартериолярными лимфоидными муфтами (центральные артериолы). Последние по мере прохождения в белой пульпе отдают коллатерали в виде капилляров, снабжающих лимфоидную ткань и заканчивающихся в маргинальной зоне. Дистально центральная артериола утрачивает лимфоидную оболочку и, проникая в красную пульпу, разветвляется на кисточковых артериолы, на концах покрытые периартериолярными макрофагальными муфтами. Эти сосуды изливают кровь непосредственно в синусоиды селезенки (закрытое кровообращение) или между ними - в тяжи красной пульпы (открытое кровообращение), откуда она попадает в синусоиды селезенки и далее - в вены красной пульпы и трабекулярные вены, собирающиеся в селезеночную вену.

ОРГАНЫ КРОВЕТВОРЕНИЯ И ИММУНОГЕНЕЗА

Рис. 157. Красный костный мозг (общий вид)

Окраска: азур II-эозин

1 - кость: 1.1 - компактное вещество, 1.1.1 - сосуд, проникающий в губчатое вещество, 1.2 - губчатое вещество, 1.2.1 - костные трабекулы, 1.2.2 - эндост; 2 - гемопоэтический компонент; 3 - стромальный компонент: 3.1 - ретикулярные клетки, 3.2 - жировые клетки, 3.3 - макрофаги с гранулами кармина в цитоплазме; 4 - сосудистый компонент: 4.1 - синусоиды (венулярные синусы), 4.2 - центральная вена

Рис. 158. Красный костный мозг

Окраска: азур II-эозин

(после прижизненного введения животному кармина)

1 - гемопоэтический компонент: 1.1 - эритробластический островок, 1.2 - скопления развивающихся гранулоцитов, 1.3 - мегакариоцит, 1.4 - бластные формы, 1.5 - лимфоциты; 2 - стромальный компонент: 2.1 - ретикулярные клетки, 2.2 - жировые клетки, 2.3 - макрофаги с гранулами кармина; 3 - сосудистый компонент: 3.1 - синусоид (венулярный синус), 3.1.1 - эндотелий, 3.2 - зрелые форменные элементы в просвете синуса

Примечание. Гемопоэтический и стромальный компоненты образуют миелоидную ткань

Рис. 159. Тимус. Доля

Окраска: гематоксилин-эозин

1 - капсула; 2 - междольковая соединительная ткань; 3 - долька: 3.1 - корковое вещество, 3.2 - мозговое вещество, 3.2.1 - тимусные тельца (Гассаля), 3.2.2 - кровеносные сосуды

Рис. 160. Тимус. Долька

Окраска: гематоксилин-эозин

1 - междольковая соединительная ткань; 2 - корковое вещество: 2.1 - тимоциты коркового вещества; 3 - мозговое вещество: 3.1 - тимоциты мозгового вещества, 3.2 - тимусные тельца (Гассаля), 3.3 - кровеносные сосуды

Рис. 161. Лимфатический узел (общий вид)

Окраска: гематоксилин-эозин

1 - капсула; 2 - трабекула; 3 - корковое вещество: 3.1 - наружная кора, 3.1.1 - лимфоидные узелки, 3.2 - глубокая кора - паракортикальная область; 4 - мозговое вещество: 4.1 - мозговые тяжи; 5 - ворота узла: 5.1 - кровеносные сосуды; 6 - приносящие лимфатические сосуды; 7 - лимфатические синусы: 7.1 - субкапсулярный (краевой), 7.2 - межузелковый, 7.3 - мозговой, 7.4 - воротный; 8 - выносящий лимфатический сосуд

Путь лимфотока показан зелеными стрелками

Рис. 162. Лимфатический узел (участок)

Окраска: гематоксилин-эозин

1 - капсула; 2 - трабекула; 3 - корковое вещество: 3.1 - наружная кора, 3.1.1 - лимфоидный узелок (В-зависимая зона), 3.1.1.1 - герминативный центр, 3.1.1.2 - корона, 3.2 - глубокая кора - паракортикальная область (Т-зависимая зона); 4 - мозговое вещество: 4.1 - мозговые тяжи (В-зависимая зона); 5 - лимфатические синусы: 5.1 - субкапсулярный (краевой), 5.2 - межузелковый, 5.3 - мозговой

Граница между наружной корой и паракортикальной областью показана пунктирной линией

Рис. 163. Селезенка

Окраска: гематоксилин-эозин

1 - мезотелий; 2 - капсула: 2.1 - гладкие миоциты; 3 - трабекулы; 4 - элементы белой пульпы: 4.1 - лимфоидный узелок (В-зависимая зона), 4.1.1 - герминативный центр, 4.1.2 - корона; 4.2 - периартериолярная лимфоидная муфта (Т-зависимая зона), 5 - красная пульпа; 6 - сосуды: 6.1 - трабекулярная артерия, 6.2 - трабекулярная вена, 6.3 - центральная артериола

Рис. 164. Схема кровообращения в селезенке

1 - селезеночная артерия; 2 - трабекулярная артерия; 3 - артерия красной пульпы; 4 - центральная артериола: 4.1 - коллатерали центральной артериолы; 5 - кисточковые артериолы; 6 - артериола, окруженная макрофагальной муфтой, открывающаяся в синусоид селезенки - закрытое кровообращение (6.1, зеленые стрелки) или в красную пульпу - открытое кровообращение (6.2, красные стрелки); 7 - синусоид селезенки, в просвет которого через щели между эндотелиоцитами из красной пульпы мигрируют форменные элементы крови (оранжевые стрелки); 8 - вена красной пульпы; 9 - трабекулярная вена; 10 - селезеночная вена; 11 - красная пульпа; 12 - белая пульпа: 12.1 - лимфоидный узелок, 12.2 - периартериолярное лимфоидное влагалище, 12.3 - маргинальная зона; 13 - маргинальный синус