Регуляторные системы организма человека. Физиология эндокринной системы

Дубинин, Вячеслав Альбертович Регуляторные системы организма человека: Учебное пособие для

студентов вузов обучающихся по направлению подготовки 510600 Биология и биологич/ Владислав Иванович Сивоглазов, Василий Васильевич Каменский, Михаил Романович Сапин. - М.: Дрофа, 2003.- 368 с. : ил.

ISBN 5-7107-6073 -0, 7000 экз.

В пособии на современном уровне, но в доступной для читателя форме изложены основы знаний по анатомии нервной системы, нейрофизиологии и нейрохимии (с элементами психофармакологии), физиологии высшей нервной деятельности и нейроэндокринологии. Для студентов вузов, обучающихся по направлению подготовки 510600 Биология, биологическим, а также медицинским, психологическим и другим специальностям

Анатомия и гистология человека ББК 28 .706я73

Предисловие..................................................................................................

Введение........................................................................................................

1. Основы клеточного строения живых организмов.................................

1.1. Клеточная теория...............................................................................

1.2. Химическая организация клетки......................................................

1.3. Строение клетки...............................................................................

1.4. Синтез белков в клетке....................................................................

1.5. Ткани: строение и функции............................................................

2. Строение нервной системы....................................................................

2.1. Рефлекторный принцип работы мозга...........................................

2.2. Эмбриональное развитие нервной системы..................................

2.3. Общее представление о cтроении нервной системы....................

2.4. Оболочки и полости центральной нервной cистемы...................

2.5. Спинной мозг...................................................................................

2.6. Общее строение головного мозга...................................................

2.7. Продолговатый мозг........................................................................

2.8. Мост..................................................................................................

2.9. Мозжечок..........................................................................................

2.10. Средний мозг..................................................................................

2.11. Промежуточный мозг....................................................................

2.12. Конечный мозг...............................................................................

2.13. Проводящие пути головного и спинного мозга..........................

2.14. Локализация функций в коре полушарий большого мозга.......

2.15. Черепные нервы.............................................................................

2.16. Спинномозговые нервы.................................................................

2.17. Автономная (вегетативная) нервная система..............................

3. Общая физиология нервной системы...................................................

3.1. Синаптические контакты нервных клеток....................................

3.2. Потенциал покоя нервной клетки..................................................

3.3. Потенциал действия нервной клетки.............................................

3.4. Постсинаптические

потенциалы.

Распространение

потенциала

действия по нейрону.....................................................................................

3.5. Жизненный цикл медиаторов нервной системы.........................

3.6. Ацетилхолин..................................................................................

3.7. Норадреналин.................................................................................

3.8. Дофамин.........................................................................................

3.9. Серотонин.......................................................................................

3.10. Глутаминовая кислота (глутамат) ..............................................

3.11. Гамма-аминомасляная кислота...................................................

3.12. Другие медиаторы-непептиды: гистамин, аспарагиновая кислота,

глицин, пурины...........................................................................................

3.13. Медиаторы-пептиды....................................................................

4. Физиология высшей нервной деятельности.......................................

4.1. Общие представления

принципах организации

поведения.

Компьютерная аналогия работы центральной нервной системы..........

4.2. Возникновение учения о высшей нервной деятельности. Основные

понятия физиологии высшей нервной деятельности..............................

4.3. Разнообразие безусловных рефлексов.........................................

4.4. Разнообразие условных рефлексов..............................................

4.5. Неассоциативное

обучение.

Механизмы кратковременной и

долговременной памяти.............................................................................

4.6. Безусловное и условное торможение...........................................

4.7. Система сна и бодрствования.......................................................

4.8. Типы высшей нервной деятельности (темпераменты)...............

4.9. Сложные типы ассоциативного обучения животных.................

4.10. Особенности высшей

деятельности человека. Вторая

сигнальная система.....................................................................................

4.11. Онтогенез высшей нервной деятельности человека................

4.12. Система потребностей, мотиваций, эмоций..............................

5. Эндокринная регуляция физиологических функций........................

5.1. Общая характеристика эндокринной системы...........................

5.2. Гипоталамо-гипофизарная система.............................................

5.3. Щитовидная железа

.......................................................................

5.4. Паращитовидные железы..............................................................

5.5. Надпочечники................................................................................

5.6. Поджелудочная железа.................................................................

5.7. Эндокринология размножения.....................................................

Предисловие

Для последних лет характерно значительное повышение интереса к психологии и смежным с ней наукам. Результатом этого является организация большого числа вузов и факультетов, осуществляющих подготовку профессиональных психологов, в том числе в таких специфических областях, как психотерапия, педагогическая психология, клиническая психология и др. Все это создает предпосылки для разработки учебников и учебных пособий нового поколения, учитывающих современные научные достижения и концепции.

В предлагаемом учебном пособии рассматриваются естественнонаучные (прежде всего анатомические и физиологические) факты, актуальные для психологических дисциплин. Оно представляет собой целостный курс, в котором данные о высших функциях мозга излагаются на базе нейроморфологических, нейроцитологических, биохимических и молекулярно-биологических представлений. Большое внимание уделяется информации о механизмах действия психотропных препаратов, а также о происхождении основных нарушений деятельности нервной системы.

Авторы надеются, что данное пособие поможет студентам получить надежные базовые знания по целому ряду учебных курсов, посвященных анатомии и физиологии нервной системы, физиологии высшей нервной деятельности (поведения), физиологии эндокринной системы.

Введение

Почему человек всегда пытался узнать, как работают системы, управляющие его организмом? Видимо, потому, что понимание принципов функционирования и взаимодействия нервной и эндокринной систем - самых сложных из всех известных биологических объектов - представляет несомненный интерес. Кроме того, все психические явления выступают производными физических и химических процессов, происходящих в человеческом теле и прежде всего в нервной и эндокринной системах. Раскрыв их суть, можно более осознанно относиться к использованию ресурсов мозга, лечить болезни, корректировать психические функции и т. п.

Подавляющее большинство современных психологов (не говоря уже о

биологах и медиках) исходят из того, что центральная нервная система (ЦНС) в той или иной степени является материальным субстратом психической деятельности. К сожалению, сегодня нейронауки еще далеки от видения полной картины не только принципов, но и частных проявлений работы ЦНС. Недаром один из величайших биологов XX столетия Нобелевский лауреат Ф. Крик пишет, что такие функции мозга человека, как восприятие, сознание, воображение, эмоции, «недоступны пониманию на современном уровне наших знаний. Для того чтобы постичь эти высшие уровни нервной деятельности, очевидно, хорошо было бы как можно больше узнать о более низких уровнях, особенно доступных прямому эксперименту. Необходимо рассмотреть теории, которые касаются переработки информации в больших и сложных системах, будь то информация, поступающая от органов чувств, или инструкции, посылаемые мышцам и железам, или же поток сигналов, заключающийся в обширной нервной и эндокринной активности между этими двумя крайними членами».

Авторы этой книги не ставят целью решение вопроса об отношении психического к физическому. Они лишь исходят из того очевидного факта, что современный психолог, особенно работающий в прикладных сферах, должен владеть базовыми знаниями в таких областях, как анатомия мозга, нейрофизиология, нейрохимия, физиология поведения, нейроэндокринология.

В настоящее время интерес к психологии как профессии чрезвычайно высок. Кроме различных форм подготовки специалистов-психологов, все более развивается система поствузовского обучения, позволяющая осваивать различные области психологии (например, психотерапию) теми, кто уже имеет высшее образование. Студентам читаются курсы анатомии и физиологии нервной системы, физиологии высшей нервной деятельности, физиологии сенсорных систем, иногда - общей биологии и др. Однако специализированных пособий, в которых учитывалась бы специфика преподавания перечисленных дисциплин будущим психологам, явно недостаточно.

В предлагаемом пособии авторы попытались изложить современные представления о принципах устройства и функционирования двух основных интегрирующих и регулирующих систем организма - нервной и эндокринной. Значительное внимание уделено как отдельным молекулярным регуляторам, так и деятельности клеток и клеточных структур, а также системному уровню, обеспечивающему регуляцию внутренних органов, обучение, изменение эмоционального состояния и т. д.

Задача авторов несколько осложнялась тем, что в учебных заведениях психологического профиля не преподают химию и физику. Поэтому сведения, относящиеся к этим разделам знаний, представлены в доступной форме и лишь тогда, когда они необходимы для понимания основ функционирования нервной и эндокринной систем. Химические формулы медиаторов, гормонов и т. п. будут понятны читателям, обладающим соответствующей подготовкой.

Те же, для кого восприятие формул затруднительно, вполне могут овладеть материалом, пользуясь лишь текстом учебника. Авторы старались привести как можно больше примеров, позволяющих наглядно представить, в каких областях могут быть использованы специалистом-психологом излагаемые сведения.

Книга состоит из пяти глав.

В первой главе, посвященной строению клетки - функциональной единицы любого живого организма, изложены основы клеточной теории, данные о химическом составе клеток и важнейших протекающих в них процессах, характеристики основных тканей человеческого организма, в том числе нервной.

Во второй главе дано описание анатомического строения различных составляющих нервной системы: головного и спинного мозга, периферических нервов, вегетативной нервной системы; приведена функциональная характеристика описываемых структур (ядер, трактов и др.).

В третьей главе изложены электрофизиологические и химические основы работы нервных клеток, способы передачи информации от нейрона к нейрону

и от нейронов к исполнительным органам; перечислены основные группы психотропных препаратов, употребляемых в клинике; указаны механизмы действия ряда наркотиков.

В четвертой главе рассмотрены принципы, особенности и типология высшей нервной деятельности (ВНД), разнообразие рефлекторных поведенческих проявлений, механизмы обучения и памяти, системы условного торможения, сна и бодрствования, системы потребностей, мотиваций и эмоций.

В пятой главе, посвященной современным представлениям о деятельности эндокринной системы, ее взаимосвязях с нервной системой и участии гормонов в обеспечении психической деятельности, особое внимание уделено роли эндокринной системы в развитии ряда видов психопатологии.

Пособие может быть использовано при изучении курсов анатомии и физиологии нервной системы, физиологии ВНД, а также родственных учебных дисциплин (например, общей биологии, зоопсихологии, психофизиологии), которые читаются будущим психологам и студентам некоторых других специальностей (педагоги, биологи, медики и т. п.).

1. Основы клеточного строения живых организмов

1.1. Клеточная теория

Все живые организмы на Земле, за небольшим исключением, состоят из клеток. Впервые клетки были описаны в 1665 г. Р. Гуком, увидевшим их в коре пробкового дерева. Но только к 1839 г. усилиями многих ученых была

создана клеточная теория, имеющая в своей основе следующие положения.

1. Все живые существа, от одноклеточных до крупнейших растительных и животных организмов, состоят из клеток.

2. Все клетки сходны по строению, химическому составу, жизненным функциям.

3. Несмотря на то что в многоклеточных организмах отдельные клетки специализируются на выполнении какой-то определенной функции, они способны и к самостоятельной жизнедеятельности, т. е. могут питаться, расти, размножаться.

4. Каждая клетка возникает из клетки.

Таким образом, клетка - элементарная единица живого, лежащая в основе строения, развития и размножения всех живых организмов. Так как многоклеточные организмы представляют собой сложные клеточные структуры, образующие целостные системы, то без понимания основ строения и регуляции процессов жизнедеятельности в одной клетке невозможно понять принципов регуляции всего организма.

1.2. Химическая организация клетки

Организм человека включает множество химических элементов: обнаружено присутствие 86 элементов из таблицы Д. И. Менделеева. Однако 98% массы нашего организма образовано всего четырьмя элементами: кислородом (около 70%), углеродом (15-18%), водородом (около 10%) и азотом (около 2%). Все остальные элементы подразделяются на

макроэлементы (около 2% массы) имикроэлементы (около 0,1% массы). К

макроэлементам относят фосфор, калий, натрий, железо, магний, кальций, хлор и серу, а к микроэлементам - цинк, медь, иод, фтор, марганец и другие элементы. Несмотря на очень малые количества, микроэлементы необходимы как каждой клетке, так и всему организму в целом.

В клетках атомы и группы атомов различных элементов способны терять или приобретать электроны. Так как электрон имеет отрицательный заряд, то потеря электрона приводит к тому, что атом или группа атомов становятся положительно заряженными, а приобретение электрона делает атом или группу атомов отрицательно заряженными. Такие электрически заряженные атомы и группы атомов называются ионами. Противоположно заряженные ионы притягивают друг друга. Связь, обусловленная таким притяжением, называетсяионной. Ионные соединения состоят из отрицательных и положительных ионов, противоположные заряды которых равны по величине,

и поэтому в целом молекула электронейтральна. Примером ионного

соединения может служить поваренная соль, или хлорид натрия NaCl. Это вещество образуют ионы натрия Na+ с зарядом +1 и хлорид-ионы Cl− с зарядом

В состав клетки входят неорганические и органические вещества. Среди неорганических преобладает вода, содержание которой колеблется от 90% в

организме эмбриона до 65% в организме пожилого человека. Вода - универсальный растворитель, и почти все реакции в нашем организме проходят в водных растворах. Внутреннее пространство клеток и органоидов клеток представляет собой водный раствор различных веществ. Растворимые в воде вещества (соли, кислоты, белки, углеводы, спирты и др.) называют гидрофильными, а нерастворимые (например, жиры) -гидрофобными.

Важнейшими органическими веществами, входящими в состав клеток, являются белки. Содержание белков в различных клетках колеблется от 10 до 20%. Белковые молекулы очень велики и представляют собой длинные цепочки (полимеры), собранные из повторяющихся единиц (мономеров). Мономерами белков являютсяаминокислоты. Длина, а следовательно, и масса белковой молекулы могут сильно варьировать: от двух аминокислот до многих тысяч. Короткие белковые молекулы принято называтьпептидами. В состав белков входит около 20 видов аминокислот, соединенных между собойпептидными связями. Последовательность аминокислот в молекуле каждого белка строго определена и называетсяпервичной структурой белка. Эта цепочка аминокислот свертывается в спираль, называемуювторичной структурой белка. У каждого белка эта спираль по-своему располагается в пространстве, скручиваясь в более или менее сложнуютретичную структуру, или глобулу, определяющую биологическую активность молекулы белка. Молекулы некоторых белков образованы несколькими удерживающимися вместе глобулами. Принято говорить, что такие белки имеют, кроме того, и

четвертичную структуру.

Белки выполняют целый ряд важнейших функций, без которых невозможно существование ни отдельно взятой клетки, ни целого организма.

Структурно-строительная функцияоснована на том, что белки - важнейшие составляющие части всех мембран: в большинстве клеток есть цитоскелет, образованный определенными видами белков. В качестве примеров белков, выполняющих структурно-строительную функцию, можно привести коллаген и эластин, которые обеспечивают упругость и прочность кожи и являются основой связок, соединяющих мышцы с суставами и суставы между собой.

Каталитическая функция белков заключается в том, что особые виды белков -ферменты - способны ускорять течение химических реакций, причем иногда во много миллионов раз. Все движения клеток осуществляются с помощью специальных белков (актин, миозин и др.). Таким образом, белки выполняютдвигательную функцию. Другая функция белков,транспортная,

проявляется в том, что они способны переносить кислород (гемоглобин) и целый ряд других веществ: железо, медь, витамины. Основой иммунитета также являются особые белки - антитела, способные связывать бактерии и другие чужеродные агенты, делая их безопасными для организма. Эта функция белков получила названиезащитной. Многие гормоны и другие вещества, регулирующие функции клеток и всего организма, являются

короткими белками, или пептидами. Таким образом, белки выполняют регуляторные функции. (Подробно о регуляторных белках и пептидах см. в разделе, посвященном эндокринной системе.) При окислении белков выделяется энергия, которую организм может использовать. Однако белки слишком важны для организма, да и энергетическая ценность белков ниже, чем у жиров, поэтому обычно белки расходуются на энергетические нужды только в крайнем случае, при истощении запасов углеводов и жиров.

Другой класс химических веществ, необходимый для жизни, - углеводы,

или сахара.Углеводы подразделяются на моносахаридыи полисахариды,

построенные из моносахаридов. Среди моносахаридов важнейшими являются глюкоза, фруктоза, рибоза. Из полисахаридов в животных клетках чаще всего встречается гликоген, а в растительных - крахмал и целлюлоза.

Углеводы выполняют две важнейшие функции: энергетическую и структурно-строительную. Так, для клеток нашего мозга глюкоза является практически единственным источником энергии, и уменьшение ее содержания в крови опасно для жизни. В печени человека хранится небольшой запас полимера глюкозы - гликогена, его достаточно, чтобы покрывать потребность в глюкозе в течение приблизительно двух суток.

Суть структурно-строительной функции углеводов заключается в следующем: сложные углеводы, соединенные с белками (гликопротеины) или жирами (гликолипиды), входят в состав клеточных мембран, обеспечивая взаимодействие клеток между собой.

В состав клеток входят также жиры, илилипиды. Их молекулы построены из глицерина и жирных кислот. К жироподобным веществам относятся холестерин, стероиды, фосфолипиды и др. Липиды входят в состав всех клеточных мембран, являясь их основой. Липиды гидрофобны и вследствие этого непроницаемы для воды. Таким образом, липидные слои мембраны защищают содержимое клетки от растворения. Это их структурностроительная функция. Однако липиды - важный источник энергии: при окислении жиров выделяется в два с лишним раза больше энергии, чем при окислении такого же количества белков или углеводов.

Нуклеиновые кислоты представляют собой полимеры, построенные из мономеров -нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара и остатка фосфорной кислоты. Существуют два вида нуклеиновых кислот: дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК), отличающиеся по составу азотистых оснований и сахаров.

Азотистых оснований четыре: аденин, гуанин, цитозин итимин. Они и определяют названия соответствующих нуклеотидов: адениловый (А), гуаниловый (Г), цитидиловый (Ц) и тимидиловый (Т) (рис. 1.1).

Каждая цепь ДНК представляет полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов.

Молекула ДНК имеет сложное строение. Она состоит из двух спирально закрученных цепей, которые по всей длине соединены друг с другом

водородными связями. Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью.

При образовании двойной спирали ДНК азотистые основания одной цепи располагаются в строго определенном порядке против азотистых оснований другой. При этом обнаруживается важная закономерность: против аденина одной цепи всегда располагается тимин другой цепи, против гуанина - цитозин и наоборот. Это объясняется тем, что пары нуклеотидов аденин и тимин, а также гуанин и цитозин строго соответствуют друг другу и являются дополнительными, или комплементарными (от лат.complementum - дополнение), друг другу. Между аденином и тимином всегда возникают две, а между гуанином и цитозином - три водородные связи (рис. 1.2). Следовательно, у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых - числу цитидиловых. Зная последовательность нуклеотидов в одной цепи ДНК, по принципу комплементарности можно установить порядок нуклеотидов другой цепи.

С помощью четырех типов нуклеотидов в ДНК записана вся важная информация об организме, передающаяся по наследству следующим поколениям, другими словами, ДНК выступает носителем наследственной информации.

Рис. 1.1. Четыре нуклеотида, из которых построены все ДНК живой природы

Молекулы ДНК в основном находятся в ядрах клеток, но небольшое их количество содержится в митохондриях и пластидах.

Молекула РНК, в отличие от молекулы ДНК, - полимер, состоящий из одной цепочки значительно меньших размеров. Мономерами РНК являются нуклеотиды, состоящие из рибозы, остатка фосфорной кислоты и одного из четырех азотистых оснований. Три азотистых основания - аденин, гуанин и

цитозин - такие же, как и у ДНК, а четвертое - урацил. Образование полимера РНК происходит через ковалентные связи между рибозой и остатком фосфорной кислоты соседних нуклеотидов.

Выделяют три типа РНК, различающихся по структуре, величине молекул, расположению в клетке и выполняемым функциям.

Рибосомные РНК (р-РНК) входят в состав рибосом и участвуют в формировании активного центра рибосомы, где происходит процесс биосинтеза белка.

Транспортные РНК (т-РНК) - самые небольшие по размеру - транспортируют аминокислоты к месту синтеза белка.

Информационные, илиматричные, РНК (и-РНК) синтезируются на участке одной из цепей молекулы ДНК и передают информацию о структуре белка из ядра клеток к рибосомам, где эта информация реализуется.

Таким образом, различные типы РНК представляют собой единую функциональную систему, направленную на реализацию наследственной информации через синтез белка.

Комплементарное соединение нуклеотидов и образование двухцепочечной молекулы ДНК

Рис. 1.3. Строение молекулы АТФ

Физиологические процессы в организме человека согласованно проте­кают благодаря существованию определенных механизмов их регуляции.

Регуляция различных процессов в организме осуществляется с помощью нервного и гуморального механизмов.

Гуморальная регуляция осуществляется с помощью гуморальных факторов (гормонов ), которые разносятся кровью и лимфой по всему организму.

Нервная регуляция осуществляется с помощью нервной системы.

Нервный и гуморальный способы регуляции функций тесно связаны между собой. На деятельность нервной системы постоянно оказывают влияние приносимые с током крови химические вещества, а образование большинства химических веществ и выделение их в кровь находится под постоянным контролем нервной системы.

Регуляция физиологических функций в организме не может осуществляться с помощью только нервной или только гуморальной регуляции - это единый комплекс нейрогуморалыюй регуляции функций.

В последнее время высказано предположение, что существуют не две системы регуляции (нервная и гуморальная), а три (нервная, гуморальная и иммунная).

Нервная регуляция

Нервная регуляция - это координирующее влияние нервной системы на клетки, ткани и органы, один из основных механизмов саморегуляции функций целостного организма. Нервная регуляция осуществляется с помощью нервных импульсов. Нервная регуляция является быстрой и локальной, что особенно важно при регуляции движений, и затрагивает все(!) системы организма.

В основе нервной регуляции лежит рефлекторный принцип. Рефлекс является универсальной формой взаимодействия организма с окружающей средой, это ответная реакция организма на раздражение, которая осуществляется через центральную нервную систему и контролируется ею.

Структурно-функциональной основой рефлекса является рефлекторная дуга - последовательно соединенная цепочка нервных клеток, обеспечивающая осуществление ответа на раздражение. Все рефлексы осуществляются I благодаря деятельности центральной нервной системы - головного и спинного мозга.

Гуморальная регуляция

Гуморальная регуляция - это координация физиологических и биохимических процессов, осуществляемая через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ (гормонов), выделяемых клетками, органами и тканями в процессе их жизнедеятельности.

Гуморальная регуляция возникла в процессе эволюции раньше, чем нервная. Она усложнялась в процессе эволюции, в результате чего возникла эндокринная система (железы внутренней секреции).

Гуморальная регуляция подчинена нервной регуляции и составляет совместно с ней единую систему нейрогуморальной регуляции функций организма, которая играет важную роль в поддержании относительного пос­тоянства состава и свойств внутренней среды организма (гомеостаза) и его приспособлении к меняющимся условиям существования.


Иммунная регуляция

Иммунитет - это физиологическая функция, которая обеспечивает устойчивость организма к действию чужеродных антигенов. Иммунитет человека делает его невосприимчивым ко многим бактериям, вирусам, грибкам, глистам, простейшим, различным ядам животных, обеспечивает защиту организма от раковых клеток. Задачей иммунной системы является распознавать и разрушать все чужеродные структуры.

Иммунная система является регулятором гомеостаза. Эта функция осуществляется за счет выработки аутоантител , которые, например, могут связывать избыток гормонов.

Иммунологическая реакция, с одной стороны, является неотъемлемой частью гуморальной, так как большинство физиологических и биохимических процессов осуществляется при непосредственном участии гуморальных посредников. Однако нередко иммунологическая реакция носит прицельный характер и тем самым напоминает нервную регуляцию.

Интенсивность иммунного ответа, в свою очередь, регулируется нейрофильным способом . Работа иммунной системы корректируется мозгом и через эндокринную систему. Такая нервная и гуморальная регуляция осуществляется с помощью нейромедиаторов, нейропептидов и гормонов. Промедиаторы и нейропептиды достигают органов иммунной системы по аксонам нервов, а гормоны выделяются эндокринными железами не­родственно в кровь и таким образом доставляются к органам иммунной системы. Фагоцит (клетка иммунитета), уничтожает бактериальные клетки

Начало формы

В многоклеточном организме существует единая нейро-эндокринная система, которая обеспечивает согласованную регуляцию функций, структур и обмена веществ в различных органах и тканях.

Нервная система, как правило, через химический синапс (с помощью медиаторов), влияет на ближайшую к нервному окончанию клетку, а эндокринные образования вырабатывают гормоны, действующие на множество, даже удаленных от места их выработки, органов и тканей.

Нервная и эндокринная системы регулируют активность друг друга. Кроме того, одни и те же биологически активные вещества (БАВ) могут секретироваться эндокринными железами и нейронами (например, норадреналин).

Даже один отдел нервной системы (например, гипоталамус) способен влиять на другие структуры, как по нервным путям, так и с помощью гормонов.

Общая физиология эндокринной системы

Существование эндокринной системы невозможно без секреторных клеток. Они, вырабатывают свои биологически активные секреты (гормоны), которые поступают во внутренние внеклеточные среды организма (тканевая жидкость, лимфа и кровь). Поэтому эндокринные железы часто называют железами внутренней секреции.

В эндокринную систему входят (рис. 1) эндокринные железы (органы, в которых большинство клеток секретируют гормоны), нейрогемальные образования (нейроны, секретирующие вещества, обладающие свойствами гормонов)и диффузная эндокринная система (клетки секретирующие гормоны в органах и тканях, состоящих преимущественно из «неэндокринных» структур).

Рис. 1. Основные представители эндокринной системы: а) железы внутренней секреции (на примере надпочечника); б) нейрогемальные образования и в) диффузная эндокринная система (на примере поджелудочной железы).

К железам внутренней секреции относятся: гипофиз, щитовидная и околощитовидные железы, надпочечник и эпифиз. Примером нейрогемальной структуры являются нейроны секретирующие окситоцин, а диффузная эндокринная система наиболее характерна для поджелудочной железы, пищеварительного тракта, половых желез, тимуса и почек.

Эндокринные железы постоянно секретируют гормоны (базальный уровень секреции ), а уровень такой секреции, как правило, зависит от скорости их синтеза (только щитовидная железа накапливает в виде коллоида значительные количества гормонов ).

Таким образом, в соответствии с классической моделью эндокринной системы, гормон выделяется эндокринными железами в кровь, циркулирует с ней по всему организму и взаимодействует с клетками-мишенями независимо от степени удаления их от источника секреции.

Гормоны Свойства и классификации гормонов

Гормоны – это органические соединения, вырабатываемые в кровь специализированными клетками и влияющие вне места своего образования на определенные функции организма.

Для гормонов характерны: специфичность и высокая биологическая активность, дистантность действия, способность к прохождению через эндотелий капилляров и быстрая обновляемость.

Специфичность проявляется местом образования и избирательным действием гормонов на клетки. Биологическая активность гормонов характеризуется чувствительностью мишени к очень низким их концентрациям (10 -6 -10 -21 М). Дистантность действия заключается в проявлении эффектов гормонов на значительном расстоянии от места их образования (эндокринное действие). Способность к прохождению через эндотелий капилляров облегчает секрецию гормонов в кровь и переход их к клеткам-мишеням, а быстрая обновляемость объясняется высокой скоростью инактивации гормона или выведения из организма.

По химической природе гормоны делят на белковые, стероидные, а также производные аминокислот и жирных кислот.

Белковые гормоны дополнительно делят на полипептиды и протеиды (белки). К стероидным относят гормоны коры надпочечника и половых желез. Производными аминокислоты тирозина являются катехоламины (адреналин, норадреналин и дофамин) и тиреоидные гормоны, а жирных кислот - простогландины, тромбоксаны и лейкотриены.

У всех небелковых и некоторых небелковых гормонов также отсутствует видовая специфичность.

Вызываемые гормонами эффекты делят (рис. 2) на метаболические, морфогенетические, кинетические и коррегирующие (например, адреналин усиливает сердечные сокращения, но и без него сердце сокращается).

Эффекты

Метаболи-ческие

Морфогене-тические

Кинетические

Коррегирующие

Изменяют интенсивность обмена веществ

Регулируют дифференцировку и метаморфоз тканей

Повышают активность клеток-мишеней

Влияют на структуры, способные работать и при отсутствии гормонов

Рис. 2. Основные физиологические эффекты гормонов.

Гормоны переносятся кровью в растворенном и связанном (с белками) состояниях. Связанные гормоны неактивны и не разрушаются. Поэтому белки плазмы обеспечивают функции транспорта и депо гормона в крови. Часть из них (например, альбумины) взаимодействует с многими гормонами, но существуют и специфические переносчики. Например, кортикостероиды преимущественно связываются с транскортином.

Регуляция многих процессов в организме обеспечивается по принципу обратной связи. Он впервые был сформулирован отечественным ученым М.М. Завадовским в 1933 г. Под обратной связью подразумевается влияние результата деятельности системы на ее активность.

Различают «длинный», «короткий» и «ультракороткий» (рис. 3) уровни обратной связи.

Рис. 3. Уровни обратной связи.

Длинный уровень регуляции обеспечивает взаимодействие удаленных клеток, короткий – находящихся в соседних тканях, а ультракороткий – только в пределах одного структурного образования.

Регуляторные системы организма человека - Дубынин В.А. - 2003.

В пособии на современном уровне, но в доступной для читателя форме изложены основы знаний по анатомии нервной системы, нейрофизиологии и нейрохимии (с элементами психофармакологии), физиологии высшей нервной деятельности и нейроэндокринологии.
Для студентов ВУЗов, обучающихся по направлению подготовки 510600 Биология, биологическим, а также медицинским, психологическим и другим специальностям.

ОГЛАВЛЕНИЕ
ПРЕДИСЛОВИЕ - 5с.
ВВЕДЕНИЕ - 6-8с.
1 ОСНОВЫ КЛЕТОЧНОГО СТРОЕНИЯ ЖИВЫХ ОРГАНИЗМОВ - 9-39с.
1.1 Клеточная теория - 9с.
1.2 Химическая организация клетки -10-16с.
1.3 Строение клетки - 17-26с.
1.4 Синтез белков в клетке - 26-31с.
1.5 Ткани: строение и функции - 31-39с.
2 СТРОЕНИЕ НЕРВНОЙ СИСТЕМЫ - 40-96с.
2.1 Рефлекторный принцип работы мозга - 40-42с.
2.2 Эмбриональное развитие нервной системы - 42-43с.
2.3 Общее представление о строении нервной системы - 43-44с.
2.4 Оболочки и полости центральной нервной системы - 44-46с.
2.5 Спинной мозг - 47-52с.
2.6 Общее строение головного мозга - 52-55с.
2.7 Продолговатый мозг - 56-57с.
2.8 Мост - 57-бОс.
2.9 Мозжечок - 60-62с.
2.10 Средний мозг - 62-64с.
2.11 Промежуточный мозг - 64-68с.
2.12 Конечный мозг - 68-74с.
2.13 Проводящие пути головного и спинного мозга - 74-80с.
2.14 Локализация функций в коре полушарий большого мозга - 80-83с.
2.15 Черепные нервы - 83-88с.
2.16 Спинномозговые нервы - 88-93с.
2.17 Автономная (вегетативная) нервная система - 93-96с.
3 ОБЩАЯ ФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ - 97-183с.
3.1 Синаптические контакты нервных клеток - 97-101 с.
3.2 Потенциал покоя нервной клетки - 102-107с.
3.3 Потенциал действия нервной клетки -108-115с.
3.4 Постсинаптические потенциалы. Распространение потенциала действия по нейрону- 115-121с.
3.5 Жизненный цикл медиаторов нервной системы -121-130с.
3.6 Ацетилхолин - 131-138с.
3.7 Норадреналин - 138-144с.
3.8 Дофамин-144-153С.
3.9 Серотонин - 153-160с.
3.10 Глутаминовая кислота (глутамат) -160-167с.
3.11 Гамма-аминомасляная кислота-167-174с.
3.12 Другие медиаторы-непептиды: гистамин, аспарагиновая кислота, глицин, пурины - 174-177с.
3.13 Медиаторы-пептиды - 177-183с.
4 ФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ - 184-313с.
4.1 Общие представления о принципах организации поведения. Компьютерная аналогия работы центральной нервной системы - 184-191с.
4.2 Возникновение учения о высшей нервной деятельности. Основные понятия физиологии высшей нервной деятельности -191-200с.
4.3 Разнообразие безусловных рефлексов - 201-212с.
4.4 Разнообразие условных рефлексов - 213-223с.
4.5 Неассоциативное обучение. Механизмы кратковременной и долговременной памяти - 223-241с.
4.6 Безусловное и условное торможение - 241-251с.
4.7 Система сна и бодрствования - 251-259с.
4.8 Типы высшей нервной деятельности (темпераменты) - 259-268с.
4.9 Сложные типы ассоциативного обучения животных - 268-279с.
4.10 Особенности высшей нервной деятельности человека. Вторая сигнальная система - 279-290с.
4.11 Онтогенез высшей нервной деятельности человека - 290-296с.
4.12 Система потребностей, мотиваций, эмоций - 296-313с.
5 ЭНДОКРИННАЯ РЕГУЛЯЦИЯ ФИЗИОЛОГИЧЕСКИХ ФУНКЦИЙ -314-365с.
5.1 Общая характеристика эндокринной системы - 314-325с.
5.2 Гипоталамо-гипофизарная система - 325-337с.
5.3 Щитовидная железа - 337-341с.
5.4 Паращитовидные железы - 341-342с.
5.5 Надпочечники - 342-347с.
5.6 Поджелудочная железа - 347-350с.
5.7 Эндокринология размножения - 350-359с.
5.8 Эпифиз, или шишковидная железа - 359-361с.
5.9 Тимус - 361-362с.
5.10 Простагландины - 362-363с.
5.11 Регуляторные пептиды - 363-365с.
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ - 366-367с.


Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Регуляторные системы организма человека - Дубынин В.А. - fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.

ГОУ ВПО УГМА РОСЗДРАВА

Кафедра биологической химии

«Утверждаю»

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2008 г

Экзаменационные вопросы по биохимии

По специальности «фармация» 060108, 2008 г.

Белки, ферменты.

1. Аминокислоты: классификация по химической природе, химическим свойствам,

биологической роли.

2. Строение и физико-химические свойства природных аминокислот.

3. Стереоизомерия и амфотерность аминокислот.

4. Физико-химические свойства белка. Обратимое и необратимое осаждение белка.

5. Механизм образования пептидной связи, ее свойства и особенности. Первичная

структура белка, биологическая роль.

6. Пространственные конфигурации белков: вторичная, третичная, четвертичная

структуры белка, связи их стабилизирующие, роль.

7 Стабилизирующие, дестабилизирующие, нарушающие аминокислоты и их роль в

структурной организации белков, понятие о доменной, сверх вторичной и

над четвертичной структурах.

8. Четвертичная структура белков, кооперативность функционирования протомеров.

8. Водородные связи, их роль в строении и функции белков.

9. Характеристика простых и сложных белков, классификация, основные представители,

их биологические функции.

10. Гемопротеиды: основные представители, функции. Строение гема.

11. Структура, номенклатура, биологическая роль нуклеотидтрифосфатов.

12. Ферменты: понятие, свойства – сходство и отличие с катализаторами небелковой

13. Активный центр ферментов, его структурно-функциональная неоднородность.

Единицы активности ферментов.

14. Механизм действия ферментов. Значение образования фермент-субстратного

комплекса, стадии катализа.

15. Изображение графической зависимости скорости катализа от концентраций субстрата

и фермента. Понятие о Км, её физиологическом смысле и клинико-диагностическом

значении.

16. Зависимость скорости реакции от концентрации субстрата и фермента, температуры,

рН среды, времени реакции.

17. Ингибиторы и виды ингибирования, их механизм действия.

18. Основные пути и механизмы регуляции активности ферментов на уровне клетки и

целого организма. Полиферментные комплексы.

19. Аллостерические ферменты, их структура, физико-химические свойства, роль.

20. Аллостерические эффекторы (модуляторы), их характеристика, механизм действия.

21. Механизмы ковалентной регуляции ферментов (обратимой и необратимой), их роль в

обмене веществ.

22. Неспецифическая и специфическая регуляция активности ферментов – понятия,

23. Механизмы специфической регуляции активности ферментов: индукция – репрессия.

24. Роль гормонов стероидной природы в механизмах регуляции активности ферментов.

25. Роль гормонов пептидной природы в механизмах регуляции активности ферментов.

26. Изоферменты - множественные молекулярные формы ферментов: особенности

структуры, физико-химических свойств, регуляторных функций, клинико –

диагностическое значение.

27. Применение ферментов в медицине и фармации (энзимодиагностика, энзимопатология,

энзимотерапия).

28. Простетические группы, коферменты, кофакторы, косубстраты, субстраты,

метаболиты, продукты реакций: понятия, примеры. Коферменты и кофакторы:

химическая природа, примеры, роль в катализе.

29. Энзимопатии: понятие, классификация, причины и механизмы развития, примеры.

30. Энзимодиагностика: понятие, принципы и направления, примеры.

31. Энзимотерапия: виды, методы, используемые ферменты, примеры.

32. Системная энзимотерапия: понятие, области применения, используемые ферменты,

пути введения, механизмы действия.

33. Локализация ферментов: ферменты общего назначения, органо- и органелло-

специфические ферменты, их функции и клинико-диагностическое значение.

30. Принципы номенклатуры и классификации ферментов, краткая характеристика.

30. Современная теория биологического окисления. Строение, функции, механизм

восстановления: НАД + , ФМН, ФАД, КоQ, цитохромов. Различие в их функциях.

30. Хемиосмотическая теория сопряжения окисления и фосфорилирования.

30. Электрохимический потенциал, понятие его роль в сопряжении окисления и

фосфорилирования.

30. Химическая и конформационнея гипотезы сопряжения окисления и фосфорилирования.

30. Фотосинтез.Реакции световой и темновой фаз фотосинтеза, биологическая роль.

Структура хлоропластов хлорофилл его строение, роль.

30. Световые реакции фотосинтеза. Фотосистемы Р-700 и Р-680” их роль. Механизм

фотосинтетического фосфорилирования.

Энергетический обмен.

1. Митохондрии: строение, химический состав, маркерные ферменты, функции, причины

и последствия повреждений.

2. Общая схема энергетического обмена и образования субстратов биологического

окисления; типы окислительных ферментов и реакций, примеры.

3. Пути использования О 2 в клетках (перечислить), значение. Диоксигеназный путь,

значение, примеры.

4 Сходство и отличие монооксигеназного пути использования О 2 в митохондриях и

эндоплазматической сети.

5. Монооксигеназный путь использования О 2 в клетке: ферменты, коферменты,

косубстраты, субстраты, значение.

6. Цитохром Р-450: структура, функция, регуляция активности.

7. Сравнительная характеристика цитохромов В 5 и С: особенности структуры, функции,

значение.

8. Микросомальная редокс-цепь переноса электронов: ферменты, коферменты, субстраты,

косубстраты, биологическая роль.

9. АТФ: строение, биологическая роль, механизмы образования из АДФ и Фн.

10.Окислительное фосфорилирование: механизмы сопряжения и разобщения,

физиологическое значение.

11.Окислительное фосфорилирование: механизмы, субстраты, дыхательный контроль,

возможные причины нарушений и последствия.

12.Редокс-цепь окислительного фосфорилирования: локализация, ферментные комплексы,

окисляемые субстраты, ОВП, коэффициент Р/О, биологическое значение.

13.Сравнительная характеристика окислительного и субстратного фосфорилирования:

локализация, ферменты, механизмы, значение.

14.Сравнительная характеристика митохондриальной и микросомальной редокс-цепей:

ферменты, субстраты, косубстраты, биологическая роль.

15.Сравнительная характеристика цитохромов клетки: виды, строение локализация,

16.Цикл Кребса: схема, регуляция активности, энергетический баланс окисления АцКоА

до Н 2 О и СО 2 .

17.Цикл Кребса: окислительные реакции, номенклатура ферментов, значение.

18.Регуляторные реакции цикла Кребса, номенклатура ферментов, механизмы регуляции.

19.a-Кетоглутаратдегидрогеназный комплекс: состав, катализируемая реакция, регуляция.

20.Цикл Кребса: реакции превращения a-кетоглутарата в сукцинат, ферменты, значение.

21.Цикл Кребса: реакции превращения сукцината в оксалоацетат, ферменты, значение.

22.Антиоксидантная защита клеток (АОЗ): классификация, механизмы, значение.

23.Механизмы образования активных форм кислорода (АФК), физиолоическое и

клиническое значение.

24. Механизм образования и токсического действия . О - 2 , роль СОД в обезвреживании.

25. Механизмы образования и токсического действия пероксидного кислорода, механизмы

его обезвреживания.

26. Механизмы образования и токсического действия пероксидов липидов, механизмы их

обезвреживания.

27. Механизмы образования и токсического действия гидроксильных радикалов,

механизмы их обезвреживания.

28. СОД и каталаза: коферменты, реакции, значение в физиологии и патологии клетки.

29. Оксид азота (NO): реакция образования, регуляция, механизмы физиологических и

токсических эффектов.

30. Оксида азота: метаболизм, регуляция, механизмы физиологических и токсических

эффектов.

31. Перекисное окисление липидов (ПОЛ): понятие, механизмы и стадии развития,

значение.

32. Антиоксидантная защита клетки (АОЗ): классификация; механизм действия системы

глутатиона.

33. Антиоксидантная защита клетки (АОЗ): классификация, механизм действия системы

ферментативной защиты.

34. Антиоксидантная защита клетки (АОЗ): классификация, механизмы действия системы

неферментативной защиты.

35. Антиоксиданты и антигипоксанты: понятия, примеры представителей и механизмы их

действия.

36. NO-синтаза: тканевая локализация, функция, регуляция активности, физиологическое и

клиническое значение.

Обмен углеводов

1. Углеводы: определение класса, принципы нормирования суточной потребности,

структурная и метоболическая роль.

2. Гликоген и крахмал: структуры, механизмы переваривания и всасывания конечных

продуктов гидролиза.

3. Механизмы мембранного пищеварения углеводов и всасывания моносахаридов.

4. Мальабсорбция: понятие, биохимические причины, общие симптомы.

5. Синдром непереносимости молока: причины, биохимические нарушения, механизмы раз –

вития основных симптомов, последствия.

6. Углеводы: определение класса, строение и биологическое значение ГАГ.

7. Производные моносахаридов: уроновые и сиаловые кислоты, амино- и

дезоксисахариды строение и биологическая роль.

8. Пищевые волокна и клетчатка: особенности строения, физиологическая роль.

9. Гл6Ф: реакции образования и распада до глюкозы, номенклатура и характеристика

ферментов, значение.

10. Пути обмена Гл6Ф, значение путей, реакции образования из глюкозы, характеристика и

номенклатура ферментов.

11. Реакции расщепления гликогена до глюкозы и Гл6Ф – тканевые особенности, значение,

ферменты, регуляция.

12. Реакции биосинтеза гликогена из глюкозы – тканевые особенности, ферменты,

регуляция, значение.

13. Механизмы ковалентной и аллостерической регуляции обмена гликогена, значение.

14. Адреналин и глюкагон: сравнительная характеристика по химической природе,

механизму действия, метаболическим и физиологическим эффектам.

15. Механизмы гормональной регуляции обмена гликогена, значение.

16. Катаболизм глюкозы в анаэробных и аэробных условиях: схема, сравнить

энергетический баланс, указать причины различной эффективности.

17. Гликолиз - реакции субстратного фосфорилирования и фосфорилирования субстратов:

номенклатура ферментов, механизмы регуляции, биологическое значение.

18. Гликолиз: киназные реакции, номенклатура ферментов, регуляция, значение.

19. Регуляторные реакции гликолиза, ферменты, механизмы регуляции, биологическое

значение.

20. Реакции гликолитической оксидоредукции аэробного и анаэробного гликолиза:

написать, сравнить энергетическую эффективность, значение.

21. Гликолиз: реакции превращения триозофосфатов в пируват, сравнить энергетический

выход в аэробных и анаэробных условиях.

22. Эффект Пастера: понятие, механизм, физиологическое значение. Сравнить

энергетический баланс расщепления фруктозы в отсутствии и реализации эффекта П.

23. Пути обмена лактата: схема, значение путей, тканевые особенности.

24. Превращение пирувата в АцКоА и оксалоацетат: реакции, ферменты, регуляция,

значение.

25. Челночные механизмы транспорта водорода из цитозоля в митохондрии: схемы,

биологическое значение, тканевые особенности.

26. Пентозофосфатный шунт гликолиза: схема, биологическое значение, тканевые

особенности.

27. Пентозный цикл - реакции до пентозофосфатов: ферменты, регуляция, значение.

28. Окислительные реакции гликолиза и пентозофосфатного шунта, биологическое

значение.

29. Глюконеогенез: понятие, схема, субстраты, аллостерическая регуляция, тканевые

особенности, биологическое значение.

30. Глюконеогенез: ключевые реакции, ферменты, регуляция, значение.

31. Механизмы образования глюкозы в печени: схемы, значение, причины и последствия

возможных нарушений.

32. Гормональная регуляция механизмов поддержания уровня сахара в крови.

33. Уровни и механизмы регуляции обмена углеводов, примеры.

34. Глюкозо-лактатный и глюкозо-аланиновый циклы (цикл Кори): схема, значение.

35. Центральный уровень регуляции обмена углеводов – адреналин, глюкагон, нервная

36. Обмен фруктозы в печени – схема, значение. Непереносимость фруктозы: причины,

метаболические нарушения, биохимические и клинические проявления.

37. Обмен галактозы в печени – схема, значение. Галактоземия: причины, метаболические

нарушения, биохимические и клинические проявления.

38 Гипергликемия: определение понятия, классификация причин, биохимические

39. Гипогликемия: определение понятия, классификация причин, биохимические

нарушения, клинические проявления, механизмы компенсации.

40. Инсулин – человеческий и животный: сравнить по химическому составу, структуре,

физико химическим и иммунологическим свойствам.

41. Механизмы биосинтеза и секреции инсулина: этапы, ферменты, регуляция.

42. Механизмы регуляции образования и секреции инсулина концентрацией глюкозы,

аргинина, гормонами.

43. Рецепторы инсулина: тканевая, клеточная локализация, структурная организация,

метаболизм.

44. Белки – транспортеры глюкозы через клеточные мембраны: классификация,

локализация, состав и структура, механизмы регуляции их функции.

45. Общая схема механизма действия инсулина.

46. Механизм действия инсулина на транспорт глюкозы.

47. Метаболические и физиологические эффекты инсулина.

48. Сахарный диабет I и II типа: понятия, роль генетических факторов и диабетогенов в их

возникновении и развитии.

49. Стадии развития диабета типа I и II – краткая сравнительная характеристика

генетических, биохимических, морфологических признаков.

50. Механизмы нарушений обмена углеводов при сахарном диабете, клинические

проявления, последствия.

51. Инсулинорезистентность и интолерантность к глюкозе: определение понятий,

причины возникновения, метаболические нарушения, клинические проявления,

последствия.

52. Метаболический синдром: его составляющие, причины возникновения, клиническое

значение.

53. Кетоацидотическая диабетическая кома: стадии и механизмы развития, клинические

проявления, биохимическая диагностика, профилактика.

54. Гиперосмолярная диабетическая кома: механизмы развития, биохимические

нарушения, клинические проявления, биохимическая диагностика.

55. Гипогликемия и гипогликемическая кома: причины и механизмы развития,

биохимические и клинические проявления, диагностика и профилактика.

56. Механизмы развития микроангиопатий: клинические проявления, последствия.

57. Механизмы развития макроангиопатий: клинические проявления, последствия.

58. Механизмы развития нейропатий: клинические проявления, последствия.

59. Моносахариды: Классификация, изомерия, примеры, биологическое значение.

60. Углеводы: Основные химические свойстсва и качественные реакции их обнаружения в

биологических средах.

61. Методические подходы и методы исследований обмена углеводов.

Обмен липидов.

1. Дать определение классу липидов, их классификация, строение, физ-хим. свойства и биологическое значение каждого класса.

2. Принципы нормирования суточной потребности пищевых липидов.

3. Строение, химический состав, функции липопротеидов.

4. Перечислить этапы обмена липидов в организме (Ж.К.Т., кровь, печень, жировая ткань, и др.).

5. Желчь: химический состав, функции, гуморальная регуляция секреции, причины и последствия нарушений секреции.

6. ПАВ желудочно - кишечного тракта и механизмы эмульгирования, значение.

7. Ферменты, расщепляющие ТГ, ФЛ, ЭХС, и др. липиды – их происхождение, регуляция секреции, функции.

8. Схемы реакций ферментативного гидролиза липидов до их конечных продуктов.

9. Химический состав и строение мицелл, механизмы всасывания липидов.

10. Значение гепато - энтерального рециклирования желчных кислот, ХС, ФЛ в физиологии и патологии организма.

11. Стеаторея: причины и механизмы развития, биохимические и клинические проявления, последствия.

12. Механизмы ресинтеза липидов в энтероцитах, значение.

13. Обмен хиломикронов, значение (роль апопротеинов, печеночной и сосудистой липопротеинлипаз).

14. Биохимические причины, метаболические нарушения, клинические проявления нарушений обмена хиломикронов.

  1. Жировая ткань – белая и бурая: локализация, функции, субклеточный и химический состав, возрастные особенности.
  2. Особенности метаболизма и функции бурой жировой ткани.
  3. Бурая жировая ткань: механизмы регуляции термогенеза, роль лептина и белков-разобщителей, значение.
  4. Лептин: химическая природа, регуляция биосинтеза и секреции, механизмы действия, физиологические и метаболические эффекты.
  5. Белая жировая ткань: особенности метаболизма, функции, роль в интеграции обмена веществ.
  6. Механизм липолиза в белой жировой ткани: реакции, регуляция, значение.
  7. Механизмы регуляции липолиза – схема: роль СНС и ПСНС, их b- и a- адренорецепторов, гормонов адреналина, норадреналина, глюкокортикоидов, СТГ, Т 3 ,Т 4 , инсулина и их внутриклеточных посредников, значение.
  8. b-Окисление жирных кислот: кратко - история вопроса, суть процесса, современные представления, значение, тканевые и возрастные особенности.
  9. Подготовительная стадия b-окисления жирных кислот: реакция активации и челночный механизм транспорта жирных кислот через мембрану митохондрий – схема, регуляция.
  10. b-Окисление жирных кислот: реакции одного оборота цикла, регуляция, энергетический баланс окисления стеариновой и олеиновой кислот (сравнить).
  11. Окисление глицерина до Н 2 О и СО 2: схема, энергетический баланс.
  12. Окисление ТГ до Н 2 О и СО 2: схема, энергетический баланс.
  13. ПОЛ: понятие, роль в физиологии и патологии клетки.
  14. СРО: стадии и факторы инициации, реакции образования активных форм кислорода.
  15. Реакции образования продуктов ПОЛ, используемых для клинической оценки состояния ПОЛ.
  16. АОЗ: ферментативная, неферментативная, механизмы.
  17. Схема обмена Ацет-КоА, значение путей.
  18. Биосинтез жирных кислот: этапы, тканевая и субклеточная локализация процесса, значение, источники углерода и водорода для биосинтеза.
  19. Механизм переноса Ацет-КоА из митохондрии в цитозоль, регуляция, значение.
  20. Реакция карбоксилирования Ацет-КоА, номенклатура фермента, регуляция, значение.
  21. Цитрат и Мал-КоА: реакции образования, роль в механизмах регуляции обмена жирных к-т.
  22. Пальмитилсинтетазный комплекс: структура, субклеточная локализация, функция, регуляция, последовательность реакций одного оборота процесса, энергетический баланс.
  23. Реакции удлинения – укорочения жирных кислот, субклеточная локализация ферментов.
  24. Десатурирующие системы жирных кислот: состав, локализация, функции, примеры (образование олеиновой кислоты из пальмитиновой).
  25. Взаимосвязь биосинтеза жирных кислот с обменом углеводов и энергетическим обменом.
  26. Гормональная регуляция биосинтеза жирных кислот и ТГ– механизмы, значение.
  27. Реакции биосинтеза ТГ, тканевые и возрастные особенности, регуляция, значение.
  28. Биосинтез ТГ и ФЛ: схема, регуляция и интеграция этих процессов (роль фосфотидной кислоты диглицерида, ЦТФ).
  29. Биосинтез холестерина: реакции до мевалоновой кислоты далее, схематично.
  30. Особенности регуляции в кишечной стенке и других тканях биосинтеза ХС; роль гормонов: инсулина, Т 3 ,Т 4 , витамина РР.
  31. Реакции образования и распада эфиров холестерина – роль АХАТ и гидролазы ЭХС, особенности тканевого распределения ХС и его эфиров, значение.
  32. Катаболизм ХС, тканевые особенности, пути удаления из организма. Лекарственные препараты и пищевые вещества, снижающие содержание ХС в крови.
  33. Реакции биосинтеза кетоновых тел, регуляция, значение.
  34. Реакции распада кетоновых тел до Ацет-КоА и, далее до СО 2 и Н 2 О, схема, энергетический баланс.
  35. Интеграция липидного и углеводного обменов – роль печени, жировой ткани, кишечной стенки и др.
  36. Уровни и механизмы регуляции обмена липидов (перечислить).
  37. Метаболический (клеточный) уровень регуляции обмена липидов, механизмы, примеры.
  38. Межорганный уровень регуляции обмена липидов – понятие. Цикл Рендла, механизмы реализации.
  39. Центральный уровень регуляции обмена липидов: роль СНС и ПСНС - a и b рецепторов, гормонов – КХ, ГК, Т 3 , Т 4 , ТТГ, СТГ, инсулина, лептина, и др.

54. Обмен ЛПОНП, регуляция, значение; роль ЛПЛ, апо В- 100, Е и С 2 , ВЕ-рецепторов, ЛПВП.

55. Обмен ЛПНП, регуляция, значение; роль апо В- 100 , В-клеточных рецепторов, АХАТ, БЛЭХ, ЛПВП.

56. Обмен ЛПВП, регуляция, значение; роль ЛХАТ, апо А и С, других классов ЛП.

57. Липиды крови: состав, нормальное содержание каждого компонента, транспорт по кровотоку физиологическое и диагностическое значение.

58. Гиперлипидемии: классификация по Фредриксону. Взаимосвязь каждого класса со специфическим патологическим процессом и его биохимическая диагностика.

59. Лабораторные методы установления типов липидемий.

60. Дислипопротеинемии: хиломикронемия, b-липопротеинемия, абеталипопротеинемия, болезнь Танжи - биохимические причины, метаболические нарушения, диагностика.

61. Атеросклероз: понятие, распространённость, осложнения, последствия.

62. Атеросклероз: причины, стадии и механизмы развития.

63. Экзогенные и эндогенные факторы риска развития атеросклероза, механизм их действия, профилактика.

64. Атеросклероз: особенности развития и течения при сахарном диабете.

65. Диабетические макроангиопатии: механизмы развития, роль в возникновении, течении и осложнении атеросклероза.

66. Ожирение: понятие, классификация, возрастные и половые особенности отложения жира, расчетные показатели степени ожирения, значение.

67. Липостат: понятие, основные звенья и механизмы его функционирования, значение.

68. Гуморальные факторы, регулирующие центр голода, перечислить.

69. Лептин: регуляция образования и поступления в кровоток, механизм участия в развитии первичного ожирения.

70. Абсолютная и относительная лептиновая недостаточность: причины, механизмы развития.

71. Вторичное ожирение: причины, последствия.

72. Биохимические нарушения в тканях и крови при ожирении, последствия, профилактика.

73. Ожирение: механизмы взаимосвязи с сахарным диабетом и атеросклерозом.

74. Инсулинорезистентность: понятие, биохимические причины и механизмы развития, метаболические нарушения, взаимосвязь с ожирением.

75. Роль кахексина (ФНО-a) в развитии инсулиновой резистентности и ожирения.

76. Метаболический синдром: понятие, его составляющие, клиническое значение.

Роль наследственных факторов и факторов окружающей среды в его

возникновении.

Регуляторные системы организма.

  1. Системы регуляции:определение понятий – гормоны, гормоноиды, гистогормоны, дисперсная эндокринная система, иммунная регуляторная система, их общие свойства.
  2. Классификация и номенклатура гормонов: по месту синтеза, химической природе, функциям.
  3. Уровни и принципы организации регуляторных систем: нервной, гормональной, иммунной.
  4. Этапы метаболизма гормонов: биосинтез, активация, секреция, транспорт по кровотоку, рецепция и механизм действия, инактивация и удаление из организма, клиническое значение.
  5. V2: Базы данных. Системы управления базами данных и базами знаний.
  6. V2: Назначение и основы использования систем искусственного интеллекта; базы знаний, экспертные системы, искусственный интеллект.
  7. а развитие экономики туризма оказывает заметное воздействие состояние кредитно-денежной системы.
  8. А.Смит и формирование системы категорий классической политической экономии