Mitu mm elavhõbedat ühes atmosfääris

Pikkus ja kaugus Mass Mahu mõõtmed hulgitooted ja toiduained Pindala Maht ja mõõtühikud sisse retseptid Temperatuuri rõhk, mehaaniline pinge, Youngi moodul Energia ja töö Võimsus Jõud Aeg Lineaarkiirus Lamenurk Soojusefektiivsus ja kütusesäästlikkus Numbrid Infohulga mõõtühikud Vahetuskursid Mõõtmed Naisteriided ja jalatsid Meeste rõivaste ja jalatsite mõõtmed Nurkkiirus ja pöörlemissagedus Kiirendus Nurkkiirendus Tihedus Eriruumala Inertsimoment Jõumoment Pöördemoment Eripõlemissoojus (massi järgi) Energiatihedus ja erisoojus kütuse põlemine (mahu järgi) Temperatuuride erinevus Soojuspaisumise koefitsient Soojustakistus Soojusjuhtivus Erisoojus Energia kokkupuude, soojuskiirguse võimsus Soojusvoo tihedus Soojusülekandetegur Mahuvool Massivool Molaarvoog Massivoolutihedus Molaarkontsentratsioon Massikontsentratsioon lahuses Dünaamiline (absoluutne) viskoossus Kinemaatiline viskoossus Pindpinevus Auru läbilaskvus Auru läbilaskvus, auru ülekandekiirus Helitase Mikrofoni tundlikkus Helirõhk tase (SPL) ) Heledus Valgustugevus Valgustus Eraldusvõime in arvutigraafika Sagedus ja lainepikkus Optiline võimsus dioptrites ja fookuskaugus Võimsus dioptrites ja objektiivi suurendus (×) Elektrilaeng Lineaarne laengutihedus Pinnalaengu tihedus Mahulaengu tihedus Elekter Voolu lineaarne tihedus Pinna voolutihedus Elektrivälja tugevus Elektrostaatiline potentsiaal ja pinge Elektritakistus Spetsiifiline elektritakistus Elektrijuhtivus Elektrijuhtivus Elektriline mahtuvus Induktiivsus Ameerika traatmõõturi tasemed dBm (dBm või dBmW), dBV (dBV), vattides jne. Ühikud Magnetomotoorjõu pinge magnetväli magnetvoog Magnetiline induktsioon Imendunud doosikiirus ioniseeriv kiirgus Radioaktiivsus. Radioaktiivne lagunemine Kiirgus. Kokkupuutedoos Kiirgus. Absorbed dose Decimaalprefiksid Andmeside Tüpograafia ja pildistamine Puidu mahuühikud Arvutus molaarmass Perioodiline süsteem keemilised elemendid D. I. Mendelejev

1 paskal [Pa] = 0,101974428892211 mm vett kolonn (4 °C) [mm w.c. Art., mm H₂O]

Algne väärtus

Teisendatud väärtus

pascal eksapaskal petapaskal terapaskal gigapaskal megapaskal kilopaskal hektopaskal dekapaskal detsipaskal sentipaskal millipaskal mikropaskal nanopaskal pikopaskal femtopaskal attopaskal njuutoni ruutmeetri kohta. njuutonmeeter ruutmeetri kohta. sentimeeter njuutonit ruutmeetri kohta. millimeeter kilonewton ruutmeetri kohta. meeter bar millibar mikrobar dynes ruutmeetri kohta. sentimeetri kilogrammi jõud ruutmeetri kohta. meeter kilogrammi jõudu ruutmeetri kohta. sentimeetri kilogrammi jõud ruutmeetri kohta. millimeeter gramm-jõud ruutmeetri kohta. sentimeetrine tonnjõud (lühike) ruutmeetri kohta. jalga tonn-jõud (lühike) ruutmeetri kohta. tolline tonnjõud (L) ruutmeetri kohta. jalga tonn-jõud (L) ruutmeetri kohta. tolli kilo-jõu ruutmeetri kohta. tolli kilo-jõu ruutmeetri kohta. tolli lbf/sq. ft lbf/sq. tolli psi nael ruutmeetri kohta. jalg torr sentimeeter elavhõbedasammas(0°C) elavhõbedamillimeeter (0°C) elavhõbedatolli (32°F) elavhõbedatolli (60°F) sentimeetrit vett kolonn (4°C) mm w.c. kolonn (4 °C) tolline w.c. sammas (4°C) jala vesi (4°C) toll vett (60°F) jalg vesi (60°F) tehniline atmosfäär füüsiline atmosfäär seinte detsibaar ruutmeeter baariumpieso (baarium) Plancki merevee rõhumõõtur merevee jalg (temperatuuril 15°C) veemeeter kolonn (4 °C)

Esiletõstetud artikkel

Veel survest

Üldine informatsioon

Füüsikas on rõhk defineeritud kui jõud, mis mõjub pinnaühikule. Kui ühele suurele ja ühele väiksemale pinnale mõjuvad kaks identset jõudu, siis on rõhk väiksemale pinnale suurem. Nõus, palju hullem on see, kui trukkide omanik sulle jalga astub kui tossude armuke. Näiteks kui vajutad terava noa teraga tomatile või porgandile, siis lõigatakse köögivili pooleks. Köögiviljaga kokkupuutuva tera pind on väike, seega on rõhk köögivilja läbi lõikamiseks piisavalt kõrge. Kui vajutad sama jõuga tomatile või porgandile tuima noaga, siis tõenäoliselt köögivilja ei lõigata, kuna noa pindala on nüüd suurem, mis tähendab, et rõhk on väiksem.

SI-süsteemis mõõdetakse rõhku paskalites ehk njuutonites ruutmeetri kohta.

Suhteline surve

Mõnikord mõõdetakse rõhku absoluut- ja atmosfäärirõhu erinevusena. Seda rõhku nimetatakse suhteliseks või manomeetriliseks rõhuks ja seda mõõdetakse näiteks autorehvide rõhu kontrollimisel. Mõõteriistad näitavad sageli, kuigi mitte alati, suhtelist rõhku.

Atmosfääri rõhk

Atmosfäärirõhk on õhurõhk antud kohas. Tavaliselt viitab see õhusamba rõhule pinnaühiku kohta. Atmosfäärirõhu muutus mõjutab ilma ja õhutemperatuuri. Inimesed ja loomad kannatavad tugeva rõhulanguse all. Madal vererõhk põhjustab probleeme inimestele ja loomadele erineval määral raskusaste, alates vaimsest ja füüsilisest ebamugavusest kuni surmaga lõppevate haigusteni. Sel põhjusel hoitakse õhusõidukite kajutites teatud kõrgusel atmosfäärirõhust kõrgemat rõhku, kuna Atmosfääri rõhk liiga madal reisimiskõrguses.


Atmosfäärirõhk väheneb koos kõrgusega. Kõrgel mägedes, näiteks Himaalajas, elavad inimesed ja loomad kohanevad selliste tingimustega. Reisijad aga peaksid võtma tarvitusele ettevaatusabinõud, et mitte haigestuda, kuna keha pole sellistega harjunud. madal rõhk. Näiteks mägironijad võivad haigestuda kõrgustõvesse vere hapnikupuuduse tõttu ja hapnikunälg organism. See haigus on eriti ohtlik mägedes viibides. kaua aega. Kõrgushaiguse ägenemine põhjustab tõsiseid tüsistusi, nagu äge mägitõbi, kopsuturse kõrgel kõrgusel, ajuturse kõrgel kõrgusel ja äge vorm mäehaigus. Kõrgus- ja mäehaiguse oht algab 2400 meetri kõrgusel merepinnast. Kõrgushaiguse vältimiseks soovitavad arstid mitte kasutada depressante, nagu alkohol ja unerohud, juua rohkelt vedelikku ning ronida kõrgusele järk-järgult, näiteks jalgsi, mitte transpordis. Hea on ka süüa suur hulk süsivesikuid ja puhata hästi, eriti kui ülesmäge tõusmine toimus kiiresti. Need meetmed võimaldavad kehal harjuda madalast atmosfäärirõhust tingitud hapnikupuudusega. Kui neid juhiseid järgitakse, suudab organism toota rohkem punaseid vereliblesid hapniku transportimiseks ajju ja siseorganid. Selleks suurendab keha pulssi ja hingamissagedust.

Esmaabi antakse sellistel juhtudel kohe. Oluline on viia patsient madalamale kõrgusele, kus atmosfäärirõhk on kõrgem, eelistatavalt alla 2400 meetri merepinnast. Kasutatakse ka ravimeid ja kaasaskantavaid hüperbaarikambreid. Need on kopsud kaasaskantavad kaamerad mida saab survestada jalapumbaga. Mägihaigusega patsient paigutatakse kambrisse, kus hoitakse rõhku vastavalt madalamale kõrgusele merepinnast. Seda kaamerat kasutatakse ainult esimese pakkumiseks arstiabi, mille järel tuleb patsient langetada.

Mõned sportlased kasutavad vereringe parandamiseks madalat vererõhku. Tavaliselt toimub see koolitus aastal normaalsetes tingimustes samas kui need sportlased magavad madala rõhuga keskkonnas. Nii harjub nende organism kõrgmäestikutingimustega ning hakkab tootma rohkem punaseid vereliblesid, mis omakorda suurendab hapniku hulka veres ning võimaldab saavutada spordis paremaid tulemusi. Selleks toodetakse spetsiaalseid telke, mille rõhku reguleeritakse. Mõned sportlased muudavad isegi rõhku kogu magamistoas, kuid magamistoa tihendamine on kulukas protsess.

ülikonnad

Piloodid ja kosmonaudid peavad töötama madala rõhuga keskkonnas, seega töötavad nad skafandrites, mis võimaldavad neil madalrõhkkonda kompenseerida. keskkond. Kosmoseülikonnad kaitsevad inimest täielikult keskkonna eest. Neid kasutatakse kosmoses. Kõrgusekompensatsiooni ülikondi kasutavad piloodid suurtel kõrgustel – need aitavad piloodil hingata ja töötavad vastu madalale õhurõhule.

hüdrostaatiline rõhk

Hüdrostaatiline rõhk on gravitatsioonist põhjustatud vedeliku rõhk. See nähtus mängib tohutut rolli mitte ainult inseneriteaduses ja füüsikas, vaid ka meditsiinis. Näiteks vererõhk on vere hüdrostaatiline rõhk seintele veresooned. Vererõhk on rõhk arterites. Seda esindavad kaks väärtust: süstoolne ehk kõrgeim rõhk ja diastoolne ehk madalaim rõhk südamelöögi ajal. Instrumendid mõõtmiseks vererõhk nimetatakse sfügmomanomeetriteks või tonomeetriteks. Vererõhu mõõtühik on elavhõbeda millimeetrid.

Pythagorase kruus on meelelahutuslik anum, mis kasutab hüdrostaatilist rõhku, täpsemalt sifooni põhimõtet. Legendi järgi leiutas Pythagoras selle tassi, et kontrollida joodud veini kogust. Teiste allikate kohaselt pidi see tass kontrollima põua ajal joodud vee kogust. Kruusi sees on kupli alla peidetud kumer U-kujuline toru. Toru üks ots on pikem ja lõpeb kruusi varres oleva auguga. Teine, lühem ots on auguga ühendatud kruusi sisemise põhjaga, nii et topsis olev vesi täidab toru. Kruusi tööpõhimõte on sarnane kaasaegse tualetipaagi tööga. Kui vedeliku tase tõuseb toru tasemest kõrgemale, voolab vedelik toru teise poolde ja voolab välja hüdrostaatiline rõhk. Kui tase, vastupidi, on madalam, saab kruusi ohutult kasutada.

rõhk geoloogias

Rõhk - oluline mõiste geoloogias. Moodustamine on võimatu ilma surveta vääriskivid nii looduslikud kui kunstlikud. Kõrge rõhk ja kõrge temperatuur on vajalikud ka õli tekkeks taimede ja loomade jäänustest. Erinevalt kalliskividest, mida leidub enamasti kivimites, moodustub õli jõgede, järvede või merede põhjas. Aja jooksul koguneb nende jäänuste kohale üha rohkem liiva. Vee ja liiva kaal surub loomsete ja taimsete organismide jäänuseid. Aja jooksul vajub see orgaaniline materjal üha sügavamale maa sisse, ulatudes mitme kilomeetri sügavusele maapinnast. Iga allasõidukilomeetri kohta tõuseb temperatuur 25°C võrra maa pind, seetõttu ulatub temperatuur mitme kilomeetri sügavusel 50–80 °C-ni. Sõltuvalt tekkimiskeskkonna temperatuurist ja temperatuuride erinevusest võib õli asemel tekkida maagaas.

looduslikud kalliskivid

Vääriskivide moodustumine ei ole alati sama, kuid surve on üks peamisi koostisosad seda protsessi. Näiteks teemandid tekivad Maa vahevöös, kõrge rõhu ja kõrge temperatuuri tingimustes. Vulkaanipursete ajal liiguvad teemandid magma toimel Maa pinna ülemistesse kihtidesse. Mõned teemandid tulevad Maale meteoriitidest ja teadlased usuvad, et need tekkisid Maa-sarnastel planeetidel.

Sünteetilised kalliskivid

Sünteetiliste vääriskivide tootmine algas 1950. aastatel ja kogub populaarsust aastal viimastel aegadel. Mõned ostjad eelistavad looduslikke vääriskive, kuid kunstlikud vääriskivid on muutumas üha populaarsemaks madala hinna ja looduslike vääriskivide kaevandamisega seotud probleemide puudumise tõttu. Seega valivad paljud ostjad sünteetilisi vääriskive, kuna nende kaevandamist ja müüki ei seostata inimõiguste rikkumise, lapstööjõu ning sõdade ja relvakonfliktide rahastamisega.

Üks teemantide laboris kasvatamise tehnoloogiatest on kristallide kasvatamise meetod kõrgsurve ja kõrge temperatuur. Spetsiaalsetes seadmetes kuumutatakse süsinikku temperatuurini 1000 ° C ja sellele avaldatakse umbes 5 gigapaskali rõhku. Tavaliselt kasutatakse seemnekristallina väikest teemanti ja süsinikualuseks grafiiti. Sellest kasvab uus teemant. See on odava hinna tõttu kõige levinum teemantide, eriti vääriskivide kasvatamise meetod. Sel viisil kasvatatud teemantide omadused on samad või paremad kui neil looduslikud kivid. Sünteetiliste teemantide kvaliteet sõltub nende kasvatamise meetodist. Võrreldes looduslike teemantidega, mis on enamasti läbipaistvad, on enamik kunstlikke teemante värvilised.

Oma kõvaduse tõttu kasutatakse teemante tootmises laialdaselt. Lisaks hinnatakse kõrgelt nende kõrget soojusjuhtivust, optilisi omadusi ning vastupidavust leelistele ja hapetele. Lõiketööriistad on sageli kaetud teemanditolmuga, mida kasutatakse ka abrasiivide ja materjalide valmistamisel. Suurem osa tootmises olevatest teemantidest on kunstliku päritoluga tänu madalale hinnale ja seetõttu, et nõudlus selliste teemantide järele ületab võime neid looduses kaevandada.

Mõned ettevõtted pakuvad teenuseid, mille abil luuakse surnu tuhast mälestusteemandid. Selleks puhastatakse tuhk pärast tuhastamist kuni süsiniku saamiseni ja seejärel kasvatatakse selle põhjal teemant. Tootjad reklaamivad neid teemante lahkunute mälestusena ja nende teenused on populaarsed, eriti riikides, kus on palju jõukaid kodanikke, nagu Ameerika Ühendriigid ja Jaapan.

Kristallide kasvatamise meetod kõrgel rõhul ja kõrgel temperatuuril

Kõrgsurve ja kõrge temperatuuriga kristallide kasvatamise meetodit kasutatakse peamiselt teemantide sünteesimiseks, kuid viimasel ajal on seda meetodit kasutatud looduslike teemantide täiustamiseks või nende värvi muutmiseks. Teemantide kunstlikuks kasvatamiseks kasutatakse erinevaid presse. Kõige kallim hooldada ja kõige keerulisem neist on kuuppress. Seda kasutatakse peamiselt looduslike teemantide värvi parandamiseks või muutmiseks. Teemandid kasvavad ajakirjanduses umbes 0,5 karaati päevas.

Kas teil on raske mõõtühikuid ühest keelest teise tõlkida? Kolleegid on valmis teid aitama. Postitage küsimus TCTermsisse ja mõne minuti jooksul saate vastuse.

Pikkus ja kaugus Mass Puistetoodete ja toiduainete mahu mõõtmed Pindala Maht ja mõõtühikud kulinaarsetes retseptides Temperatuur Rõhk, mehaaniline pinge, Youngi moodul Energia ja töö Jõud Aeg Lineaarkiirus Lamenurk Soojusefektiivsus ja kütusesäästlikkus Numbrid teabe hulk Vahetuskursid Mõõdud naisterõivad ja jalatsid Meeste rõivaste ja jalatsite mõõtmed Nurkkiirus ja pöörlemiskiirus Kiirendus Nurkkiirendus Tihedus Eriruumala Inertsimoment Jõumoment Pöördemoment Erikütteväärtus (massi järgi) Kütuse energiatihedus ja kütteväärtus ( ruumala järgi) Temperatuuride erinevus Soojuspaisumise koefitsient Soojustakistus Soojusjuhtivus Erisoojusvõimsus Energia kokkupuude, soojuskiirguse võimsus Soojusvoo tihedus Soojusülekandetegur Mahuvool Massivool Molaarvool Massivoolu tihedus Molaarkontsentratsioon Mass k kontsentratsioon lahuses Dünaamiline (absoluutne) viskoossus Kinemaatiline viskoossus Pindpinevus Auru läbilaskvus Auru läbilaskvus, auru ülekandekiirus Helitase Mikrofoni tundlikkus Helirõhutase (SPL) Heledus Valgustugevus Valgustus Eraldusvõime arvutigraafikas Sagedus ja lainepikkus Optiline võimsus dioptrites ja fookuskaugus Opt. dioptrites ja läätse suurenduses (×) Elektrilaeng Lineaarlaengu tihedus Pinnalaengu tihedus Mahulaengu tihedus Elektrivool Lineaarne voolutihedus Pinna voolutihedus Elektrivälja tugevus Elektrostaatiline potentsiaal ja pinge Elektritakistus Elektritakistus Elektrijuhtivus Elektrijuhtivus Elektriline mahtuvus Induktiivsus Ameerika traatmõõtur Tase in dBm (dBm või dBmW), dBV (dBV), vatid jne ühikud Magnetomotoorjõud Magnetvälja tugevus Magnethigi ok Magnetinduktsioon Ioniseeriva kiirguse neeldunud doosikiirus Radioaktiivsus. Radioaktiivne lagunemine Kiirgus. Kokkupuutedoos Kiirgus. Neelduv doos Kümnendkohad Andmeedastus Tüpograafia ja pilditöötlus Puidu mahuühikud Molaarmassi arvutamine D. I. Mendelejevi keemiliste elementide perioodiline süsteem

1 hektopaskal [hPa] = 0,750063755419211 elavhõbedamillimeetrit (0 °C) [mmHg]

Algne väärtus

Teisendatud väärtus

pascal eksapaskal petapaskal terapaskal gigapaskal megapaskal kilopaskal hektopaskal dekapaskal detsipaskal sentipaskal millipaskal mikropaskal nanopaskal pikopaskal femtopaskal attopaskal njuutoni ruutmeetri kohta. njuutonmeeter ruutmeetri kohta. sentimeeter njuutonit ruutmeetri kohta. millimeeter kilonewton ruutmeetri kohta. meeter bar millibar mikrobar dynes ruutmeetri kohta. sentimeetri kilogrammi jõud ruutmeetri kohta. meeter kilogrammi jõudu ruutmeetri kohta. sentimeetri kilogrammi jõud ruutmeetri kohta. millimeeter gramm-jõud ruutmeetri kohta. sentimeetrine tonnjõud (lühike) ruutmeetri kohta. jalga tonn-jõud (lühike) ruutmeetri kohta. tolline tonnjõud (L) ruutmeetri kohta. jalga tonn-jõud (L) ruutmeetri kohta. tolli kilo-jõu ruutmeetri kohta. tolli kilo-jõu ruutmeetri kohta. tolli lbf/sq. ft lbf/sq. tolli psi nael ruutmeetri kohta. ft torr sentimeeter elavhõbedat (0°C) millimeeter elavhõbedat (0°C) tolli elavhõbedat (32°F) tolli elavhõbedat (60°F) sentimeeter vett kolonn (4°C) mm w.c. kolonn (4 °C) tolline w.c. sammas (4°C) veejalg (4°C) toll vett (60°F) jalg vesi (60°F) tehniline atmosfäär füüsiline atmosfäär detsibaari sein ruutmeetri kohta pieze baarium (baarium) Plancki rõhumõõtur merevee jalg merevesi (temperatuuril 15 ° C) meeter vett. kolonn (4 °C)

Esiletõstetud artikkel

Veel survest

Üldine informatsioon

Füüsikas on rõhk defineeritud kui jõud, mis mõjub pinnaühikule. Kui ühele suurele ja ühele väiksemale pinnale mõjuvad kaks identset jõudu, siis on rõhk väiksemale pinnale suurem. Nõus, palju hullem on see, kui trukkide omanik sulle jalga astub kui tossude armuke. Näiteks kui vajutad terava noa teraga tomatile või porgandile, siis lõigatakse köögivili pooleks. Köögiviljaga kokkupuutuva tera pind on väike, seega on rõhk köögivilja läbi lõikamiseks piisavalt kõrge. Kui vajutate nüri noaga sama jõuga tomatile või porgandile, siis suure tõenäosusega köögivilja ei lõigata, kuna noa pindala on nüüd suurem, mis tähendab, et rõhk on väiksem.

SI-süsteemis mõõdetakse rõhku paskalites ehk njuutonites ruutmeetri kohta.

Suhteline surve

Mõnikord mõõdetakse rõhku absoluut- ja atmosfäärirõhu erinevusena. Seda rõhku nimetatakse suhteliseks või manomeetriliseks rõhuks ja seda mõõdetakse näiteks autorehvide rõhu kontrollimisel. Mõõteriistad näitavad sageli, kuigi mitte alati, suhtelist rõhku.

Atmosfääri rõhk

Atmosfäärirõhk on õhurõhk antud kohas. Tavaliselt viitab see õhusamba rõhule pinnaühiku kohta. Atmosfäärirõhu muutus mõjutab ilma ja õhutemperatuuri. Inimesed ja loomad kannatavad tugeva rõhulanguse all. Madal vererõhk põhjustab inimestel ja loomadel erineva raskusastmega probleeme, alates vaimsest ja füüsilisest ebamugavusest kuni surmaga lõppevate haigusteni. Sel põhjusel hoitakse õhusõidukite kajutites rõhk, mis on kõrgem kui õhurõhk antud kõrgusel, kuna õhurõhk reisilennukõrgusel on liiga madal.


Atmosfäärirõhk väheneb koos kõrgusega. Kõrgel mägedes, näiteks Himaalajas, elavad inimesed ja loomad kohanevad selliste tingimustega. Reisijad aga peaksid rakendama vajalikke ettevaatusabinõusid, et mitte haigeks jääda, sest keha pole nii madala rõhuga harjunud. Näiteks võivad mägironijad saada kõrgushaigust, mis on seotud vere hapnikupuuduse ja keha hapnikunäljaga. See haigus on eriti ohtlik, kui viibite mägedes pikka aega. Kõrgushaiguse ägenemine põhjustab tõsiseid tüsistusi, nagu äge mägitõbi, kopsuturse kõrgel kõrgusel, ajuturse kõrgel kõrgusel ja mäehaiguse kõige ägedam vorm. Kõrgus- ja mäehaiguse oht algab 2400 meetri kõrgusel merepinnast. Kõrgushaiguse vältimiseks soovitavad arstid mitte kasutada depressante, nagu alkohol ja unerohud, juua rohkelt vedelikku ning ronida kõrgusele järk-järgult, näiteks jalgsi, mitte transpordis. Samuti on hea süüa rohkelt süsivesikuid ja puhata, eriti kui tõus on kiire. Need meetmed võimaldavad kehal harjuda madalast atmosfäärirõhust tingitud hapnikupuudusega. Kui neid juhiseid järgitakse, suudab keha toota rohkem punaseid vereliblesid, et transportida hapnikku ajju ja siseorganitesse. Selleks suurendab keha pulssi ja hingamissagedust.

Esmaabi antakse sellistel juhtudel kohe. Oluline on viia patsient madalamale kõrgusele, kus atmosfäärirõhk on kõrgem, eelistatavalt alla 2400 meetri merepinnast. Kasutatakse ka ravimeid ja kaasaskantavaid hüperbaarikambreid. Need on kerged kaasaskantavad kambrid, mida saab survestada jalgpumbaga. Mägihaigusega patsient paigutatakse kambrisse, kus hoitakse rõhku vastavalt madalamale kõrgusele merepinnast. Sellist kambrit kasutatakse ainult esmaabiks, pärast mida tuleb patsient langetada.

Mõned sportlased kasutavad vereringe parandamiseks madalat vererõhku. Tavaliselt toimub selleks treening tavatingimustes ja need sportlased magavad madala rõhuga keskkonnas. Nii harjub nende organism kõrgmäestikutingimustega ning hakkab tootma rohkem punaseid vereliblesid, mis omakorda suurendab hapniku hulka veres ning võimaldab saavutada spordis paremaid tulemusi. Selleks toodetakse spetsiaalseid telke, mille rõhku reguleeritakse. Mõned sportlased muudavad isegi rõhku kogu magamistoas, kuid magamistoa tihendamine on kulukas protsess.

ülikonnad

Piloodid ja astronaudid peavad töötama madala rõhuga keskkonnas, seega töötavad nad skafandrites, mis võimaldavad neil kompenseerida keskkonna madalrõhkkonda. Kosmoseülikonnad kaitsevad inimest täielikult keskkonna eest. Neid kasutatakse kosmoses. Kõrgusekompensatsiooni ülikondi kasutavad piloodid suurtel kõrgustel – need aitavad piloodil hingata ja töötavad vastu madalale õhurõhule.

hüdrostaatiline rõhk

Hüdrostaatiline rõhk on gravitatsioonist põhjustatud vedeliku rõhk. See nähtus mängib tohutut rolli mitte ainult inseneriteaduses ja füüsikas, vaid ka meditsiinis. Näiteks vererõhk on vere hüdrostaatiline rõhk veresoonte seintele. Vererõhk on rõhk arterites. Seda tähistatakse kahe väärtusega: süstoolne ehk kõrgeim rõhk ja diastoolne ehk madalaim rõhk südamelöögi ajal. Vererõhu mõõtmise seadmeid nimetatakse sfügmomanomeetriteks või tonomeetriteks. Vererõhu mõõtühik on elavhõbeda millimeetrid.

Pythagorase kruus on meelelahutuslik anum, mis kasutab hüdrostaatilist rõhku, täpsemalt sifooni põhimõtet. Legendi järgi leiutas Pythagoras selle tassi, et kontrollida joodud veini kogust. Teiste allikate kohaselt pidi see tass kontrollima põua ajal joodud vee kogust. Kruusi sees on kupli alla peidetud kumer U-kujuline toru. Toru üks ots on pikem ja lõpeb kruusi varres oleva auguga. Teine, lühem ots on auguga ühendatud kruusi sisemise põhjaga, nii et topsis olev vesi täidab toru. Kruusi tööpõhimõte on sarnane kaasaegse tualetipaagi tööga. Kui vedeliku tase tõuseb toru tasemest kõrgemale, voolab vedelik üle toru teise poole ja voolab hüdrostaatilise rõhu toimel välja. Kui tase, vastupidi, on madalam, saab kruusi ohutult kasutada.

rõhk geoloogias

Rõhk on geoloogias oluline mõiste. Ilma surveta on võimatu moodustada vääriskive, nii looduslikke kui ka kunstlikke. Kõrge rõhk ja kõrge temperatuur on vajalikud ka õli tekkeks taimede ja loomade jäänustest. Erinevalt kalliskividest, mida leidub enamasti kivimites, moodustub õli jõgede, järvede või merede põhjas. Aja jooksul koguneb nende jäänuste kohale üha rohkem liiva. Vee ja liiva kaal surub loomsete ja taimsete organismide jäänuseid. Aja jooksul vajub see orgaaniline materjal üha sügavamale maa sisse, ulatudes mitme kilomeetri sügavusele maapinnast. Temperatuur tõuseb 25°C iga maapinnast allpool asuva kilomeetri kohta, nii et mitme kilomeetri sügavusel ulatub temperatuur 50-80°C-ni. Sõltuvalt tekkimiskeskkonna temperatuurist ja temperatuuride erinevusest võib õli asemel tekkida maagaas.

looduslikud kalliskivid

Vääriskivide moodustumine ei ole alati sama, kuid rõhk on selle protsessi üks peamisi komponente. Näiteks teemandid tekivad Maa vahevöös, kõrge rõhu ja kõrge temperatuuri tingimustes. Vulkaanipursete ajal liiguvad teemandid magma toimel Maa pinna ülemistesse kihtidesse. Mõned teemandid tulevad Maale meteoriitidest ja teadlased usuvad, et need tekkisid Maa-sarnastel planeetidel.

Sünteetilised kalliskivid

Sünteetiliste vääriskivide tootmine algas 1950. aastatel ja on viimastel aastatel populaarsust kogumas. Mõned ostjad eelistavad looduslikke vääriskive, kuid kunstlikud vääriskivid on muutumas üha populaarsemaks madala hinna ja looduslike vääriskivide kaevandamisega seotud probleemide puudumise tõttu. Seega valivad paljud ostjad sünteetilisi vääriskive, kuna nende kaevandamist ja müüki ei seostata inimõiguste rikkumise, lapstööjõu ning sõdade ja relvakonfliktide rahastamisega.

Üks teemantide laboris kasvatamise tehnoloogiatest on kristallide kasvatamise meetod kõrgel rõhul ja kõrgel temperatuuril. Spetsiaalsetes seadmetes kuumutatakse süsinikku temperatuurini 1000 ° C ja sellele avaldatakse umbes 5 gigapaskali rõhku. Tavaliselt kasutatakse seemnekristallina väikest teemanti ja süsinikualuseks grafiiti. Sellest kasvab uus teemant. See on odava hinna tõttu kõige levinum teemantide, eriti vääriskivide kasvatamise meetod. Sel viisil kasvatatud teemantide omadused on samad või paremad kui looduslikel kividel. Sünteetiliste teemantide kvaliteet sõltub nende kasvatamise meetodist. Võrreldes looduslike teemantidega, mis on enamasti läbipaistvad, on enamik kunstlikke teemante värvilised.

Oma kõvaduse tõttu kasutatakse teemante tootmises laialdaselt. Lisaks hinnatakse kõrgelt nende kõrget soojusjuhtivust, optilisi omadusi ning vastupidavust leelistele ja hapetele. Lõiketööriistad on sageli kaetud teemanditolmuga, mida kasutatakse ka abrasiivide ja materjalide valmistamisel. Suurem osa tootmises olevatest teemantidest on kunstliku päritoluga tänu madalale hinnale ja seetõttu, et nõudlus selliste teemantide järele ületab võime neid looduses kaevandada.

Mõned ettevõtted pakuvad teenuseid, mille abil luuakse surnu tuhast mälestusteemandid. Selleks puhastatakse tuhk pärast tuhastamist kuni süsiniku saamiseni ja seejärel kasvatatakse selle põhjal teemant. Tootjad reklaamivad neid teemante lahkunute mälestusena ja nende teenused on populaarsed, eriti riikides, kus on palju jõukaid kodanikke, nagu Ameerika Ühendriigid ja Jaapan.

Kristallide kasvatamise meetod kõrgel rõhul ja kõrgel temperatuuril

Kõrgsurve ja kõrge temperatuuriga kristallide kasvatamise meetodit kasutatakse peamiselt teemantide sünteesimiseks, kuid viimasel ajal on seda meetodit kasutatud looduslike teemantide täiustamiseks või nende värvi muutmiseks. Teemantide kunstlikuks kasvatamiseks kasutatakse erinevaid presse. Kõige kallim hooldada ja kõige keerulisem neist on kuuppress. Seda kasutatakse peamiselt looduslike teemantide värvi parandamiseks või muutmiseks. Teemandid kasvavad ajakirjanduses umbes 0,5 karaati päevas.

Kas teil on raske mõõtühikuid ühest keelest teise tõlkida? Kolleegid on valmis teid aitama. Postitage küsimus TCTermsisse ja mõne minuti jooksul saate vastuse.