Давление крови в разных сосудах. Кровяное давление. Распределение периферического сопротивления

Общие закономерности движения крови по кровеносному руслу.

Сопротивление току крови, а следовательно и падение давления на различных участках сосудистой системы весьма различны. Оно зависит от общего просвета и числа сосудов в разветвлении. Наибольшее падение давления крови - не менее 50% от начального давления – происходит в артериолах. Число артериол в сотни раз больше числа крупных артерий при сравнительно небольшом увеличении общего просвета сосудов. Поэтому потери давления от пристеночного трения в них весьма велики. Общее число капилляров еще больше, однако длина их настолько мала, что падение давления крови в них хотя и существенно, но меньше, чем в артериолах.

В сети венозных сосудов, площадь сечения которых в среднем в два раза больше площади сечения соответствующих артерий, скорость течения крови невысока и падения давления незначительны. В крупных венах около сердца давление становится на несколько миллиметров ртутного столба ниже атмосферного. Кровь в этих условиях движется под влиянием присасывающего действия грудной клетки при вдохе.

Течение крови в сосудистой системе в нормальных условиях имеет ламинарный характер. Оно может переходить в турбулентное при нарушении этих условий, например, при резком сужении просвета сосудов. Подобные явления могут иметь место при неполном открытии или, наоборот, при неполном закрытии сердечных или аортальных клапанов.

43. Гидравлическое сопротивление сосудов. Гидравлическое сопротивление разветвлённых участков.

Гидравлическое сопротивление сосудов X = 8 l h /(pR 4), где l - длина сосуда, R - его радиус, h - коэффициент вязкости, вводится на основании аналогий законов Ома и Пуазейля (движение электричества и жидкости описываются общими соотношениями).

Аналогия между электрическим и гидравлическим сопротивлениями позволяет использовать правило нахождения электрического сопротивления последовательного и параллельного соединений проводника, для определения гидравлического сопротивления системы последовательно или параллельно соединенных сосудов. Так, например, общее гидравлическое сопротивление последовательно и параллельно соединенных сосудов находится по формулам:

Х = Х 1 + Х 2 + Х 3 + … + Х N

X = (1/X 1 + 1/X 2 + 1/X 3 + …+ 1/X N) -1

Жидкости относительно несжимаемы. Однако, при действии внешних сил жидкость находится в особом напряженном состоянии. Говорят, что в этом случае жидкость находится под давлением, которое передается во все стороны (закон Паскаля). Оно действует также и на стенки сосуда или тела погруженного в жидкость.

Идеальной называется, несжимаемая и неимеющая внутреннего трения или вязкости, жидкость. Стационарным или установившимся называется течение, при котором скорости частиц жидкости в каждой точке потока со временем не изменяются.



Установившееся течение характеризуется соотношением: DV = vS = const. Это соотношение называется условием неразрывности струи.

При стационарном течении идеальной жидкости полное давление, равное сумме статического, гидростатического и динамического давлений, остается величиной постоянной в любом поперечном сечении потока: p + rgh + rv 2 /2 = const – уравнение Бернулли.

Все члены этого уравнения имеют размерность давления и называются: p = p ст – статическим, rgh = p г – гидростатическим, rv 2 /2 = p дин – динамическим.

Для горизонтальной трубки тока гидростаическое давление остается постоянным и может быть отнесено в правую часть уравнения, которое при этом принимает вид:

p ст + p дин = const , статическое давление обусловливает потенциальную энергию жидкости (энергию давления), динамическое давление – кинетическую. Из этого уравнения следует вывод, называемый правилом Бернулли: статическое давление невязкой жидкости при течении по горизонтальной трубе возрастает там, где скорость ее уменьшается, и наоборот. Чтобы оценить как изменяются скорость и давление крови в зависимости от участка сосудистого русла надо учесть, что площадь суммарного просвета всех капилляров в 500 - 600 раз больше поперечного сечения аорты. Это означает, что Vкап » Vаор/500. Именно в капиллярах при медленной скорости движения происходит обмен веществ между кровью и тканями. При сокращении сердца давление крови в аорте испытывает колебания. Среднее давление может быть найдено из формулы: Рср = Рд + (Рс - Рд) / 3. Падение давления крови вдоль сосудов может быть найдено из уравнения Пуазейля. Поскольку объемный расход крови должен сохраняться постоянным, а Хкап > Х арт > Хаорт, то DРкап > DР арт > DРаорт.

Кровяное давление и факторы, влияющие на его величину. Давление крови в разных отделах сосудистого русла.

Кровяное давление - это давление крови на стенки сосудов.

Артериальное давление - это давление крови в артериях.

На величину кровяного давления влияют несколько факторов.

1. Количество крови, поступающее в единицу времени в сосудистую систему.

2. Интенсивность оттока крови на периферию.

3. Ёмкость артериального отрезка сосудистого русла.

4. Упругое сопротивление стенок сосудистого русла.

5. Скорость поступления крови в период сердечной систолы.

6. Вязкость крови

7. Соотношение времени систолы и диастолы.

8. Частота сердечных сокращений.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, величина кровяного давления, в основном, определяется работой сердца и тонусом сосудов (главным образом, артериальных).

В аорте , куда кровь с силой выбрасывается из сердца, создается самое высокое давление (от 115 до 140 мм рт. ст.).

По мере удаления от сердца давление падает , так как энергия, создающая давление, расходуется на преодоление сопротивления току крови.

Чем выше сосудистое сопротивление, тем большая сила затрачивается на продвижение крови и тем больше степень падения давления на протяжении данного сосуда.

Так, в крупных и средних артериях давление падает всœего на 10%, достигая 90 мм рт.ст.; в артериолах оно составляет 55 мм, а в капиллярах – падает уже на 85%, достигая 25 мм.

В венозном отделœе сосудистой системы давление самое низкое.

В венулах оно равно 12, в венах – 5 и в полой вене – 3 мм рт.ст.

В малом круге кровообращения общее сопротивление току крови в 5-6 раз меньше , чем в большом круге . По этой причине давление в легочном стволе в 5-6 раз ниже , чем в аорте и составляет 20-30 мм рт.ст. При этом и в малом круге кровообращения наибольшее сопротивление току крови оказывают мельчайшие артерии перед своим разветвлением на капилляры.

Давление в артериях не является постоянным: оно непрерывно колеблется от некоторого среднего уровня.

Период этих колебаний различный и зависит от нескольких факторов.

1. Сокращения сердца , которые определяют самые частые волны, или волны первого порядка. Во время систолы желудочков приток крови в аорту и легочную артерию больше оттока , и давлением в них повышается.

В аорте оно составляет 110-125, а в крупных артериях конечностей 105-120 мм рт.ст.

Подъем давления в артериях в результате систолы характеризует систолическое или максимальное давление и отражает сердечный компонент артериального давления.

Во время диастолы поступление крови из желудочков в артерии прекращается и происходит только отток крови на периферию, растяжение стенок уменьшается и давление снижается до 60-80 мм рт.ст.

Спад давления во время диастолы характеризует диастолическое или минимальное давление и отражает сосудистый компонент артериального давления.

Для комплексной оценки, как сердечного, так и сосудистого компонентов артериального давления используют показатель пульсового давления.

Пульсовое давление - ϶ᴛᴏ разность между систолическим и диастолическим давлением, ĸᴏᴛᴏᴩᴏᴇ в среднем составляет 35-50 мм рт.ст.

Более постоянную величину в одной и той же артерии представляет среднее давление , ĸᴏᴛᴏᴩᴏᴇ выражает энергию непрерывного движения крови.

Так как продолжительность диастолического понижения давления больше, чем его систолического повышения, то среднее давление ближе к величинœе диастолического давления и вычисляется по формуле: СГД = ДД + ПД/3.

У здоровых людей оно составляет 80-95 мм рт.ст. и его изменение является одним из ранних признаков нарушения кровообращения.

2. Фаз дыхательного цикла , которые определяют волны второго порядка. Эти колебания менее частые, они охватывают несколько сердечных циклов и совпадают с дыхательными движениями (дыхательные волны): вдох сопровождается понижением кровяного давления , выдох повышением.

3. Тонуса сосудодвигательных центров , определяющие волны третьего порядка.

Это еще более медленные повышения и понижения давления, каждое из которых охватывает несколько дыхательных волн.

Колебания вызываются периодическим изменением тонуса сосудодвигательных центров, что чаще наблюдается при недостаточном снабжении мозга кислородом (при пониженном атмосферном давлении, после кровопотери, при отравлениях некоторыми ядами).

Кровяное давление и факторы, влияющие на его величину. Давление крови в разных отделах сосудистого русла. - понятие и виды. Классификация и особенности категории "Кровяное давление и факторы, влияющие на его величину. Давление крови в разных отделах сосудистого русла." 2017, 2018.

Особенности системы кровообращения:

1)замкнутость сосудистого русла, в который включен насосный орган сердце;

2)эластичность сосудистой стенки (эластичность артерий больше эластичности вен, однако емкость вен превышает емкость артерий);

3)разветвленность кровеносных сосудов (отличие от других гидродинамических систем);

4)разнообразие диметра сосудов (диаметр аорты равен 1,5 см, а капилляров 8-10 мкм);

5)в сосудистой системе циркулирует жидкость-кровь, вязкость которой в 5 раз выше вязкости воды.

Типы кровеносных сосудов:

1)магистральные сосуды эластического типа: аорта, крупные артерии, отходящие от нее; в стенке много эластических и мало мышечных элементов, вследствие этого данные сосуды обладают эластичностью и растяжимостью; задача данных сосудов состоит в преобразовании пульсирующего кровотока в плавный и непрерывный;

2)сосуды сопротивления или резистивные сосуды- сосуды мышечного типа, в стенке высокое содержание гладкомышечных элементов, сопротивление которых меняет просвет сосудов, а следовательно и сопротивление кровотоку;

3)обменные сосуды или «обменные герои» представлены капиллярами, которые обеспечивают протекание процесса обмена веществ, выполнение дыхательной функции между кровью и клетками; количество функционирующих капилляров зависит от функциональной и метаболической активности в тканях;

4)сосуды шунта или артерио-венулярные анастомозы напрямую связывают артериолы и венулы; если данные шунты открыты, то кровь сбрасывается из артериол в венулы, минуя капилляры, если же закрыты, то кровь идет из артериол в венулы через капилляры;

5)емкостные сосуды представлены венами, для которых характерна большая растяжимость, но малая эластичность, данные сосуды вмещают до 70 % всей крови, существенно влияют на величину венозного возврата крови к сердцу.

Кровоток.

Движение крови подчиняется законам гидродинамики, а именно происходит из области большего давления в область меньшего.

Количество крови, протекающей через сосуд прямо пропорционально разнице давлений и обратно пропорционально сопротивлению:

Q=(p1—p2) /R= ∆p/R, где Q-кровоток, p-давление, R-сопротивление;

Аналог закона Ома для участка электрической цепи:

I=E/R, где I-сила тока, E-напряжение, R-сопротивление.

Сопротивление связано с трением частиц крови о стенки сосудов, что обозначается как внешнее трение, также существует и трение между частицами- внутреннее трение или вязкость.

Закон Гагена Пуазеля:

R=8ηl/πr 4 , где η- вязкость, l- длина сосуда, r- радиус сосуда.

Q=∆pπr 4 /8ηl.

Этими параметрами определяется количество протекающей крови через поперечное сечение сосудистого русла.

Для движения крови имеет значение не абсолютные величины давлений, а разница давлений:

р1=100 мм рт ст, р2=10 мм рт ст, Q =10 мл/с;

р1=500 мм рт ст, р2=410 мм РТ ст, Q=10 мл/с.

Физическая величина сопротивление кровотоку выражается в Дин*с/см 5 . Были введены относительные единицы сопротивления: R=p/Q. Если р= 90 мм рт ст, Q= 90 мл/с, то R= 1 - единица сопротивления.

Величина сопротивления в сосудистом русле зависит от расположения элементов сосудов.

Если рассматривается величины сопротивлений, возникающих в последовательно соединенных сосудах, то общее сопротивление будет равно сумме сосудов в отдельных сосудах: R=R1+R2+…+Rn.

В сосудистой системе кровоснабжение осуществляется за счет ветвей, отходящих от аорты и идущих параллельно:

R=1/R1 + 1/R2+…+ 1/Rn, то есть общее сопротивление равно сумме величин обратных сопротивлению в каждом элементе.

Физиологические процессы подчиняются общим физическим законам.

Сердечный выброс.

Сердечный выброс-количество крови, выталкиваемой сердцем в единицу времени:

Систолический (за время 1 систолы);

Минутный объем крови или МОК определяется двумя параметрами, а именно систолическим объемом и частотой сердечных сокращений.

Величина систолического объема в покое составляет 65-70 мл, является одинаковой для правого и левого желудочков. В покое желудочки выталкивают 70 % конечного диастолического объема, к концу систолы в желудочках остается 60-70 мл крови.

V сист ср=70мл, ν ср=70 ударов в мин, V мин=V сист * ν= 4900 мл в мин ~ 5 л/мин.

Непосредственно определить V мин трудно, для этого используется пулометр (инвазивный метод).

Был предложен косвенный метод на основе газообмена.

Метод Фика (метод определения МОК).

МОК= О2 мл/мин / А - VО2 мл/л крови.

  1. Потребление О2 за минуту составляет 300 мл;
  2. Содержание О2 в артериальной крови = 20 об %;
  3. Содержание О2 в венозной крови = 14 об %;
  4. A-V (артерио-венозная разница) по кислороду = 6 об % или 60 мл крови.

МОК= 300 мл/60мл/л = 5л.

Величина систолического объема может быть определена как V мин/ν. Систолический объем зависит от силы сокращений миокарда желудочков, от величины наполнения кровью желудочков в диастолу.

Закон Франка-Старлинга устанавливает, что систола - функция диастолы.

Величина минутного объема определяется изменением ν и систолическим объемом.

При физической нагрузке величина минутного объема может возрастать до 25-30 л, систолический объем возрастает до 150 мл, ν достигает 180-200 ударов в минуту.

Реакции физически тренированных людей касаются прежде всего изменения систолического объема, нетренированных - частоты, у детей лишь за счет частоты.

Распределение МОК.

Аорта и крупные артерии

Мелкие артерии

Артериолы

Капилляры

Итого - 20 %

Мелкие вены

Крупные вены

Итого - 64%

Малый круг

Механическая работа сердца.

1.потенциальный компонент направлен на преодоление сопротивления движению крови;

2.кинетический компонент направлен на придание скорости движению крови.

Величина А сопротивления определяется массой грузы, перемещенного на определенное расстояние, определена Генцом:

1.потенциальный компонент Wn=P*h, h-высота, P= 5 кг:

Среднее давление в аорте равно 100 мл рт ст= 0,1 м * 13,6(удельный вес)=1,36,

Wn лев жел = 5* 1,36 = 6,8 кг*м;

Среднее давление в легочной артерии составляет 20 мм рт ст = 0,02 м * 13,6(удельный вес) = 0,272 м, Wn пр жел = 5 * 0,272 = 1,36 ~ 1,4 кг*м.

2.кинетический компонент Wk == m * V 2 / 2 , m = P / g , Wk = P * V 2 / 2 *g, где V - линейная скорость кровотока, Р = 5 кг, g = 9,8 м /с 2 , V = 0,5 м /с; Wk = 5*0,5 2 / 2*9,8 = 5*0,25 / 19,6 = 1,25 / 19,6 = 0,064 кг / м*с.

30 тонн на 8848 м поднимает сердце за всю жизнь, за сутки ~ 12000 кг / м.

Непрерывность движения крови определяется:

1.работой сердца, постоянством движения крови;

2.эластичностью магистральных сосудов: в систолу аорта растягивается за счет наличия в стенке большого количества эластических компонентов, в них происходит накопление энергии, которая аккумулируется сердцем во время систолы, по прекращении выталкивания крови сердцем эластические волокна стремятся вернуться в прежнее состояние, передавая энергию крови, в результате чего создается плавный непрерывный поток;

3.в результате сокращения скелетных мышц происходит сдавливание вен, давление в которых при этом повышается, что приводит к проталкиванию крови по направлению к сердцу, клапаны вен препятствуют при этом обратному току крови; если долго стоим, то кровь не оттекает, так как нет движения, в результате нарушается приток крови к сердцу, как следствие возникает обморок;

4.когда кровь приходит в нижнюю полую вену, то вступает в действие фактор наличия «-» межплеврального давления, что обозначается как присасывающий фактор, при этом чем более «-» давление, тем лучше осуществляется приток крови к сердцу;

5.сила напора сзади VIS a tergo, т.е. проталкивание новой порции впереди лежащей.

Движение крови оценивается определением объемной и линейной скорости кровотока.

Объемная скорость - количество крови, проходящей через поперечное сечение сосудистого русла в единицу времени: Q = ∆p / R , Q = Vπr 4 . В покое МОК = 5 л / мин, объемная скорость кровотока на каждом сечении сосудистого русла будет постоянна (через все сосуды в мин проходи 5 л), однако каждый орган получает разное количество крови, вследствие этого Q распределяется в % соотношении, для отдельного органа необходимо знать давление в артерии, вене, по которым осуществляется кровоснабжение, а также давление внутри самого органа.

Линейная скорость - скорость движения частиц вдоль стенки сосуда: V = Q / πr 4

По направлению от аорты суммарная площадь сечения возрастает, достигает максимума на уровне капилляров, суммарный просвет которых в 800 раз больше просвета аорты; суммарный просвет вен в 2 раза больше суммарного просвета артерий, так как каждую артерию сопровождают две вены, поэтому линейная скорость больше.

Кровоток в сосудистой системе ламинарный, каждый слой движется параллельно другому слою, не смешиваясь. Пристеночные слои испытывают большое трение, в результате скорость стремится к 0, по направлению к центру сосуда скорость возрастает, достигая в осевой части максимального значения. Ламинарный кровоток бесшумный. Звуковые явления возникают в том случае, когда ламинарный кровоток переходит в турбулентный (возникают завихрения) : Vc = R * η / ρ * r, где R - число Рейнольдса, R = V * ρ * r / η. Если R > 2000 , то поток переходит в турбулентный, что наблюдается при сужении сосудов, при возрастании скорость в местах разветвления сосудов или возникновении препятствий на пути. Турбулентный кровоток имеет шумы.

Время кругооборота крови - время, за которое кровь проходит полный круг (и малый, и большой).Составляет 25 с, что приходится на 27 систол (1/5 на малый - 5с, 4/5 на большой - 20с). В норме циркулирует 2,5 л крови, гругооборот25с, что достаточно для обеспечения МОК.

Кровяное давление.

Кровяное давление - давление крови на стенки сосудов и камер сердца, является важным энергетическим параметром, ибо это фактор, обеспечивающий движение крови.

Источник энергии - сокращение мускулатуры сердца, выполняющего насосную функцию.

Различают:

Артериальное давление;

Венозное давление;

Внутрисердечное давление;

Капиллярное давление.

Величина давления крови отражает ту величину энергии, которая отражает энергию движущегося потока. Эта энергия складывается из потенциальной, кинетической энергии и потенциальной энергии тяжести: E = P+ ρV 2 /2 + ρgh, где P - потенциальная энергия, ρV 2 /2 - кинетическая энергия, ρgh - энергия столба крови или потенциальная энергия тяжести.

Наиболее важным является показатель артериального давления, отражающий взаимодействие многих факторов, тем самым являющийся интегрированным показателем, отражающим взаимодействие следующих факторов:

Систолический объем крови;

Частота и ритм сокращений сердца;

Эластичность стенок артерий;

Сопротивление резистивных сосудов;

Скорость крови в емкостных сосудах;

Скорость циркулирующей крови;

Вязкость крови;

Гидростатическое давление столба крови: P = Q * R.

В артериальном давлении различают боковое и конечное давление. Боковое давление - давление крови на стенки сосудов, отражает потенциальную энергию движения крови. Конечное давление - давление, отражающее сумму потенциальной и кинетической энергии движения крови.

По мере движения крови происходит снижение обоих видов давлений, так как энергия потока тратится на преодоление сопротивления, при этом максимальное снижение происходит там, где суживается сосудистое русло, где необходимо преодолеть наибольшее сопротивление.

Конечное давление больше бокового на 10-20 мм рт ст. Разность называют ударным или пульсовым давлением .

Артериальное давление не является стабильным показателем, в естественных условиях меняется во время сердечного цикла, в артериальном давлении различают:

Систолическое или максимальное давление (давление, устанавливающееся в период систолы желудочков);

Диастолическое или минимальное давление, которое возникает в конце диастолы;

Разность между величиной систолического и диастолического давлений - пульсовое давление;

Среднее артериальное давление, отражающее движение крови, если бы пульсовые колебания отсутствовали.

В разных отделах давление будет принимать различные значения. В левом предсердии систолическое давление равно 8-12 мм рт ст, диастолическое равно 0, в левом желудочке сист = 130 , диаст = 4, в аорте сист =110-125 мм рт ст, диас = 80-85, в плечевой артерии сист = 110-120, диаст = 70-80, на артериальном конце капилляров сист 30-50, но здесь отсутствуют колебания, на венозном конце капилляров сист = 15-25, мелких венах сист = 78-10 (в среднем 7,1), в полых венах сист = 2-4, в правом предсердии сист = 3-6 (в среднем 4,6), диаст = 0 или «-», в правом желудочке сист = 25-30, диаст = 0-2, в легочном стволе сист = 16-30, диаст = 5-14, в легочных венах сист = 4-8.

В большом и малом круге происходит постепенное снижение давления, которое отражает расход энергии, идущей на преодоление сопротивления. Среднее давление не является средним арифметическим, например, 120 на 80, среднее 100 - неверное данное, так как продолжительность систолы и диастолы желудочков различна по времени. Для расчета среднего давления были предложены две математические формулы:

Ср р = (р сист + 2*р дисат)/3, например, (120 + 2*80)/3 = 250/3 = 93 мм рт ст, смещено в сторону диастолического или минимального.

Ср р = р диаст + 1/3 * р пульсовое, например, 80 + 13 = 93 мм рт ст.

Методы измерения артериального давления.

Используются два подхода:

Прямой метод;

Косвенный метод.

Прямой метод связан с введением в артерию иглы или канюли, соединенной трубкой, заполненной противосвертывающимся веществом, с монометром, колебания давления регистрируются писчиком, результат - запись кривой артериального давления. Данный метод дает точные измерения, но связан с трамвированием артерии, используется в экспериментальной практике, либо в хирургических операциях.

На кривой происходит отражение колебания давления, выявляются волны трех порядков:

Первого - отражает колебания во время сердечного цикла (систолический подъем и диастолическое снижение);

Второго - включает несколько волн первого порядка, связаны с дыханием, так как дыхание влияет на величину артериального давления (во время вдоха крови к сердцу притекает больше за счет «присасывающего» действия отрицательного межплеврального давления, по закону Старлинга возрастает и выброс крови, что приводит к увеличению артериального давления). Максимальное повышение давления придется на начало выдоха, однако причина - фаза вдоха;

Третьего - включает несколько дыхательных волн, медленные колебания связаны с тонусом сосудодвигательного центра (увеличение тонуса приводит к возрастанию давления и наоборот), отчетливо выявляются при кислородной недостаточности, при трамватических воздействиях на ЦНС, причина медленных колебаний - давление крови в печени.

В 1896 году Рива-Роччи предложил испытать манжетный ртутный сфигмамонометр, который связан с ртутным столбиком, трубкой с манжетой, куда нагнетается воздух, манжета накладывается на плечо, нагнетая воздух, увеличивается давление в манжете, которое становится больше систолического. Этот косвенный метод - пальпаторный, измерение осуществляется на основе пульсации плечевой артерии, но нельзя измерить диастолическое давление.

Коротковым был предложен аускультативный метод определения артериального давления. При этом манжета накладывается на плечо, создается давление выше систолического, выпускают воздух и слушают появление звуков на локтевой артерии в локтевом сгибе. При пережатии плечевой артерии ничего не слышим, так как кровоток отсутствует, но когда давление в манжете станет равным систолическому давлению, на высоте систолы начинает существовать пульсовая волна, будет проходить первая порция крови, следовательно услышим первый звук (тон), появление первого звука - показатель систолического давления. Вслед за первым тоном идет фаза шума, так как движение переходит из ламинарного в турбулентное. Когда давление в манжете будет близким или равным диастолическому давлению, то произойдет расправление артерии и прекращение звуков, что соответствует диастолическому давлению. Таким образом метод позволяет определять систолическое и диастолическое давление, рассчитать пульсовое и среднее давление.

Влияние факторов на величину артериального давления .

1. Работа сердца. Изменение систолического объема. Повышение систолического объема увеличивает максимальное и пульсовое давление. Уменьшение будет приводить к снижению и уменьшению пульсового давления.

2. Частота сокращений сердца. При более частом сокращении давление прекращается. При этом начинает возрастать минимальное диастолическое.

3. Сократительная функция миокарда. Ослабление сокращения середечной мышцы приовдит к снижению давления.

Состояние кровеносных сосудов.

4. Эластичность. Потеря эластичности приводит к возрастанию максимального давления и увеличения пульсового.

5. Просвет сосудов. Особенно у сосудов мышечного типа. Повышение тонуса приводит к увеличению артериального давления, что является причиной гипертонии. При увеличении сопротивления растет как максимальное, так и минимальное давление.

6. Вязкость крови и количество циркулирующей крови. Уменьшение количества циркулирующей крови приводит к уменьшению давления. Увеличение объема приводит к увеличению давления. При увеличении вязкости приводит к увеличению трения и увеличению давления.

Физиологические составляющие

7. Давление у мужчин выше, чем у женщин. Но после 40 лет давление у женщин становится выше, чем у мужчин

8. Повышение давления с возрастом. Повышение давления у мужчин идет равномерно. У женщин скачок появляется после 40 лет.

9. Давление во время сна понижается, а утром ниже, чем вечером.

10. Физическая работа повышает систолическое давление.

11. Курение повышает давление на 10-20 мм.

12. Давление повышается при кашле

13. Половое возбуждение повышает давление до 180-200 мм.

Система микроциркуляции.

Представлена артериолами, прекапиллярами, капиллярами, посткапиллярами, венулами, артериоло-венулярные анастомозы, лимфатические капилляры.

Артериолы представляют собой кровеносные сосуды, в которых гладкомышечные клетки располагаются в один ряд.

Прекапилляры - отдельные гладкомышечные клетки, которые не образуют сплошного слоя.

Длинна капилляра составляет 0,3-0,8 мм. А толщина от 4 до 10 мкм.

На открытие капилляров оказывает влияние состояние давления в артериолах и прекапиллярах.

Микроциркуляторное русло выполняет две функции: транспортная и обменная функции. Происходит обмен веществ, ионов, воды. Так же происходит обмен тепла и интенсивность микроциркуляции будет определяться количеством функционирующих капилляров, линейной скорость кровотока и величиной внутрикапиллярного давления.

Обменные процессы происходят за счет фильтрации и диффузии. Фильтрация капилляров зависит от взаимодействия гидростатического давления капилляров и коллоидно-осмотического давления. Процессы транскапиллярного обмена были изучены Старлингом .

Процесс фильтрации идет в сторону меньшего гидростатического давления, а коллойдно-осматическое давление обеспечивает переход жидкости из меньшего в большее. Коллоидно-осмотическое давление плазмы крови обусловлено наличием белков. Они не могут проходить через стенку капилляра и остаются в плазме. Они создают давление 25-30 мм рт.ст.

Вместе с жидкостью осуществляется перенос веществ . Это происходит путем диффузии. Скорость переноса вещества будет определяться скоростью кровотока и концентрацией вещества, выраженной в массе на объем. Вещества, которые переходят из крови поглощаются в тканях.

Пути переноса веществ .

1. Трансмембранный перенос (через поры, которые имеются в мембране и путем растворения в липидах мембран)

2. Пиноцитоз.

Объем внеклеточной жидкости будет определяться балансом между капиллярной фильтрацией и обратной реорбсорбцией жидкости. Движение крови в сосудах вызывает изменение состояние эндотелия сосудов. Установлено, что в эндотелии сосудов вырабатываются активные вещества, которые влияют на состояние гладкомышечных клеток и паренхиматозных клеток. Они могут быть как сосудорасширяющими, так и сосудосуживающими. В результате процессов микроциркуляции и обмена в тканях формируется венозная кровь, которая будет возвращаться к сердцу. На движение крови в венах опять будет оказывать фактор давления в венах.

Давление в полых венах называется центральным давление .

Артериальным пульсом называется колебание стенок артериальных сосудов . Пульсовая волна движется со скорость 5-10 м/с. А в периферических артериях от 6 до 7 м/с.

Венный пульс наблюдается только в венах, прилегающих к сердцу. Он связан с изменением давления крови в венах в связи с сокращением предсердий. Запись венного пульса называется флебограмма(?)

Давление крови в различных отделах сосудистого русла неодинаково: в артериальной системе оно выше, в венозной ниже. Это отчетливо видно из данных, представленных в табл. 3 и на рис. 16.


Таблица 3. Величина среднединамического давления в различных участках кровеносной системы человека


Рис. 16. Диаграмма изменения давления в разных частях сосудистой системы. А - систолического; Б - диастолического; В - среднего; 1 - аорта; 2 - крупные артерии; 3 - мелкие артерии; 4 - артериолы; 5 - капилляры; 6 - венулы; 7 - вены; 8 - полые вены

Кровяное давление - давление крови на стенки кровеносных сосудов - измеряется в паскалях (1 Па = 1 Н/м 2). Нормальное кровяное давление необходимо для циркуляции крови и надлежащего снабжения кровью органов и тканей, для образования тканевой жидкости в капиллярах, а также для осуществления процессов секреции и экскреции.

Величина кровяного давления зависит от трех основных факторов: частоты и силы сердечных сокращений; величины периферического сопротивления, т. е. тонуса стенок сосудов, главным образом артериол и капилляров; объема циркулирующей крови.

Различают артериальное, венозное и капиллярное давление крови. Величина артериального давления у здорового человека является довольно постоянной. Однако она всегда подвергается небольшим колебаниям в зависимости от фаз деятельности сердца и дыхания.

Различают систолическое, диастолическое, пульсовое и среднее артериальное давление.

Систолическое (максимальное) давление отражает состояние миокарда левого желудочка сердца. Его величина 13,3-16,0 кПа (100-120 мм рт. ст.).

Диастолическое (минимальное) давление характеризует степень тонуса артериальных стенок. Оно равняется 7,8-10,7 кПа (60-80 мм рт. ст.).

Пульсовое давление - это разность между систолическим и диастолическим давлением. Пульсовое давление необходимо для открытия полулунных клапанов во время систолы желудочков. В норме пульсовое давление составляет 4,7-7,3 кПа (35-55 мм рт. ст.). Если систолическое давление станет равным диастолическому, движение крови будет невозможным и наступит смерть.

Среднее артериальное давление равняется сумме диастолического и 1 / 3 пульсового давления. Среднее артериальное давление выражает энергию непрерывного движения крови и представляет собой постоянную величину для данного сосуда и организма.

На величину артериального давления оказывают влияние различные факторы: возраст, время суток, состояние организма, центральной нервной системы и т. д. У новорожденных величина максимального артериального давления составляет 5,3 кПа (40 мм рт. ст.), в возрасте 1 мес - 10,7 кПа (80 мм рт. ст.), 10-14 лет - 13,3-14,7 кПа (100-110 мм рт. ст.), 20-40 лет - 14,7-17,3 кПа (110-130 мм рт. ст.). С возрастом максимальное давление увеличивается в большей степени, чем минимальное.



В течение суток наблюдается колебание величины артериального давления: днем оно выше, чем ночью.

Значительное повышение максимального артериального давления может наблюдаться при тяжелой физической нагрузке, во время спортивных состязаний и др. После прекращения работы или окончания соревнований артериальное давление быстро возвращается к исходным показателям. Повышение артериального давления называют гипертонией . Понижение артериального давления получило название гипотонии . Гипотония может наступить в результате отравления наркотиками, при сильных травмах, обширных ожогах, больших кровопотерях.

Стойкие гипертония и гипотония могут обусловить нарушение функций органов, физиологических систем и организма в целом. В этих случаях необходима квалифицированная врачебная помощь.

У животных артериальное давление измеряют бескровным и кровавым способом. В последнем случае обнажают одну из крупных артерий (сонная или бедренная). Делают надрез в стенке артерии, через который вводят стеклянную канюлю (трубочку). Канюлю при помощи лигатур укрепляют в сосуде и соединяют с одним концом ртутного манометра с помощью системы резиновых и стеклянных трубок, заполненных раствором, препятствующим свертыванию крови. На другом конце манометра опускают поплавок с писчиком. Колебания давления передаются через жидкость трубочек ртутному манометру и поплавку, движения которого регистрируются на закопченной поверхности барабана кимографа.

У человека артериальное давление определяют аускультативным методом по Короткову (рис. 17). Для этой цели необходимо иметь сфигмоманометр Рива-Роччи или сфигмотонометр (манометр мембранного типа). Сфигмоманометр состоит из ртутного манометра, широкого плоского резинового мешка-манжеты и нагнетательной резиновой груши, соединенных друг с другом резиновыми трубками. Артериальное давление у человека обычно измеряют в плечевой артерии. Резиновую манжету, нерастяжимую благодаря покрышке из парусины, обертывают вокруг плеча и застегивают. Затем с помощью груши в манжету нагнетают воздух. Манжета раздувается и сдавливает ткани плеча и плечевую артерию. Степень этого давления можно измерить по манометру. Воздух нагнетают до тех пор, пока не перестанет прощупываться пульс в плечевой артерии, что происходив при полном ее сжатии. Затем в области локтевого сгиба, т. е. ниже места пережатия, к плечевой артерии прикладывают фонендоскоп и начинают с помощью винта понемногу выпускать воздух из манжеты. Когда давление в манжете понизится настолько, что кровь при систоле оказывается способной его преодолеть, в плечевой артерии прослушиваются характерные звуки - тоны. Эти тоны обусловлены появлением тока крови при систоле и отсутствием его при диастоле. Показания манометра, которые соответствуют появлению тонов, характеризуют максимальное, или систолическое, давление в плечевой артерии. При дальнейшем понижении давления в манжете тоны сначала усиливаются, а затем затихают и перестают прослушиваться. Прекращение звуковых явлений свидетельствует о том, что теперь и во время диастолы кровь способна проходить по сосуду. Прерывистое течение крови превращается в непрерывное. Движение по сосудам в этом случае не сопровождается звуковыми явлениями. Показания манометра, которые соответствуют моменту исчезновения тонов, характеризуют диастолическое, минимальное, давление в плечевой артерии.




Рис. 17. Определение артериального давления у человека

Артериальный пульс - это периодические расширения и удлинения стенок артерий, обусловленные поступлением крови в аорту при систоле левого желудочка. Пульс характеризуется рядом качеств, которые определяются путем пальпации чаще всего лучевой артерии в нижней трети предплечья, где она расположена наиболее поверхностно.

Пальпаторно определяют следующие качества пульса: частоту - количество ударов в 1 мин, ритмичность - правильное чередование пульсовых ударов, наполнение - степень изменения объема артерии, устанавливаемая по силе пульсового удара,напряжение - характеризуется силой, которую надо приложить, чтобы сдавить артерию до полного исчезновения пульса.

Пальпацией определяют и состояние стенок артерий: после сдавления артерии до исчезновения пульса в случае склеротических изменений сосуда она ощущается как плотный тяж.

Возникшая пульсовая волна распространяется по артериям. По мере продвижения она ослабевает и затухает на уровне капилляров. Скорость распространения пульсовой волны в различных сосудах у одного и того же человека неодинакова, она больше в сосудах мышечного типа и меньше в эластических сосудах. Так, у людей молодого и пожилого возраста скорость распространения пульсовых колебаний в эластических сосудах лежит в пределах от 4,8 до 5,6 м/с, в крупных артериях мышечного типа - от 6,0 до 7,0-7,5 м/с. Таким образом, скорость распространения пульсовой волны по артериям значительно больше, чем скорость движения крови по ним, которая не превышает 0,5 м/с. С возрастом, когда понижается эластичность сосудов, скорость распространения пульсовой волны увеличивается.

Для более детального изучения пульса производят его запись с помощью сфигмографа. Кривая, полученная при записи пульсовых колебаний, называется сфигмограммой (рис. 18).


Рис. 18. Сфигмограммы артерий, записанные синхронно. 1 - сонная артерия; 2 - лучевая; 3 - пальцевая

На сфигмограмме аорты и крупных артерий различают восходящее колено - анакроту и нисходящее колено - катакроту . Возникновение анакроты объясняется поступлением новой порции крови в аорту в начале систолы левого желудочка. В результате расширяется стенка сосуда, при этом возникает пульсовая волна, которая распространяется по сосудам, и на сфигмограмме фиксируется подъем кривой. В конце систолы желудочка, когда давление в нем снижается, а стенки сосудов возвращаются в исходное состояние, на сфигмограмме появляется катакрота. Во время диастолы желудочков давление в их полости становится ниже, чем в артериальной системе, поэтому создаются условия для возвращения крови в желудочки. В результате этого давление в артериях падает, что отражается на пульсовой кривой в виде глубокой выемки - инцизуры. Однако на своем пути кровь встречает препятствие - полулунные клапаны. Кровь отталкивается от них и обусловливает появление вторичной волны повышения давления. Это в свою очередь вызывает вторичное расширение стенок артерий, что фиксируется на сфигмограмме в виде дикротического подъема.

Физиология микроциркуляции

В сердечно-сосудистой системе центральным является микроциркуляторное звено. Все другие отделы системы кровообращения обеспечивают основную функцию, выполняемую микроциркуляторным звеном, - транскапиллярный обмен.

Микроциркуляторное звено сердечно-сосудистой системы представлено мелкими артериями, артериолами, метартериолами, капиллярами, венулами, мелкими венами.

Согласно существующим представлениям, иннервируются микрососуды с хорошо выраженным слоем гладкомышечных клеток. Иннервация прогрессивно уменьшается с исчезновением мышечных клеток в стенке микрососуда.

Транскапиллярный обмен происходит в капиллярах. Он возможен благодаря особому строению капилляров, стенка которых обладает двусторонней проницаемостью. Проницаемость - это активный процесс, который обеспечивает оптимальную среду для нормальной жизнедеятельности клеток организма.

Рассмотрим особенности строения важнейших представителей микроциркуляторного русла - капилляров.

Капилляры открыты и изучены итальянским ученым Мальпиги (1861). Общее количество капилляров в системе сосудов большого круга кровообращения составляет около 2 млрд., протяженность их 8000 км, площадь внутренней поверхности 25 м 2 , объем крови приблизительно равен сердечному выбросу - 63·10 -3 -65·10 -3 (63-65 мл). Поперечное сечение всего капиллярного русла в 500-600 раз больше поперечного сечения аорты.

Капилляры имеют форму шпильки, срезанной или полной восьмерки. В капилляре различают артериальное и венозное колено, а также вставочную часть. Длина капилляра равна 0,3·10 -3 -0,7·10 -3 м (0,3-0,7 мм), диаметр - 8·10 -6 -10·10 -6 м (0,008-0,01 мм). Через просвет такого сосуда эритроциты проходят друг за другом, несколько деформируясь. Скорость тока крови в капиллярах составляет 0,5·10 -3 -1·10 -3 м/с (0,5-1 мм/с), что в 500-600 раз меньше скорости тока крови в аорте.

Стенка капилляров образована одним слоем эндотелиальных клеток, которые снаружи сосуда располагаются на тонкой соединительнотканной базальной мембране.

Существуют закрытые и открытые капилляры. Показано, что работающая мышца животного содержит в 30 раз больше капилляров, чем мышца, находящаяся в состоянии покоя.

Форма, размеры и количество капилляров в различных органах неодинаковы. В тканях органов, в которых наиболее интенсивно происходят обменные процессы, количество капилляров на 1·10 -6 м 2 (1 мм 2) поперечного сечения значительно больше, чем в органах, где метаболизм менее выражен. Так, в сердечной мышце на 1·10 -6 м 2 (1 мм 2) поперечного сечения приходится в 2 раза больше капилляров, чем в скелетной мышце.

Для выполнения капиллярами их функций (транскапиллярный обмен) имеет значение величина артериального давления. Установлено, что в артериальном колене капилляра давление крови составляет 4,3 кПа (32 мм рт. ст.), в венозном - 2,0 кПа (15 мм рт. ст.). В капиллярах почечных клубочков величина давления достигает 9,3-12,0 кПа (70-90 мм рт. ст.), в капиллярах, оплетающих почечные канальцы, - 1,9-2,4 кПа (14-18 мм рт. ст.). В капиллярах легких величина давления равняется 0,8 кПа (6 мм рт. ст.).

Таким образом, величина давления в капиллярах тесно связана с состоянием органа (покой, активность) и теми функциями, которые он выполняет.

Кровообращение в капиллярах можно наблюдать под микроскопом в плавательной перепонке лапки лягушки. В капиллярах кровь движется прерывисто, что связано с изменением просвета артериол и прекапиллярных сфинктеров. Фазы сокращения и расслабления длятся от нескольких секунд до нескольких минут. Активность микрососудов регулируется нервными и гуморальными механизмами. На артериолы главным образом воздействуют симпатические нервы, на прекапиллярные сфинктеры - гуморальные факторы (гистамин, серотонин и др.).

Особенности кровотока в венах . Кровь из микроциркуляторного русла (венулы, мелкие вены) поступает в венозную систему. В венах давление крови низкое. Если в начале артериального русла давление крови равно 18,7 кПа (140 мм рт. ст.), то в венулах оно составляет 1,3-2,0 кПа (10-15 мм рт. ст.). В конечной части венозного русла давление крови приближается к нулю и даже может быть ниже атмосферного давления.

Движению крови по венам способствует ряд факторов: работа сердца, клапанный аппарат вен, сокращение скелетных мышц, присасывающаяся функция грудной клетки.

Работа сердца создает разность давлений крови в артериальной системе и правом предсердии. Это обеспечивает венозный возврат крови к сердцу. Наличие в венах клапанов способствует движению крови в одном направлении - к сердцу. Чередование сокращений и расслаблений мышц является важным фактором, способствующим движению крови по венам. При сокращении мышц тонкие стенки вен сжимаются и кровь продвигается по направлению к сердцу. Расслабление скелетных мышц способствует поступлению крови из артериальной системы в вены. Такое нагнетающее действие мышц получило название мышечного насоса, который является помощником основного насоса - сердца. Вполне понятно, что движение крови по венам облегчается во время ходьбы, когда ритмически работает мышечный насос нижних конечностей.

Отрицательное внутригрудное давление, особенно в фазу вдоха, способствует венозному возврату крови к сердцу. Внутригрудное отрицательное давление вызывает расширение венозных сосудов, области шеи и грудной полости, обладающих тонкими и податливыми стенками. Давление в венах понижается, что облегчает движение крови по направлению к сердцу.

Скорость тока крови в периферических венах составляет 5-14·10 -2 м/с (5-14 см/с). В полых венах скорость движения крови равна 20·10 -2 м/с (20 см/с).

Емкостная функция вен очень велика. Уменьшение емкости системных вен на 2-3% увеличивает диастолический приток крови к сердцу в 2 раза.

Линейная скорость движения крови в венах меньше, чем в артериях. Это связано с тем, что просвет вен больше просвета артериального русла.

Время кругооборота крови

Временем кругооборота крови называют время, необходимое для прохождения крови по двум кругам кровообращения. Установлено, что у взрослого здорового человека при 70-80 сокращениях сердца в 1 мин полный кругооборот крови происходит за 20-23 с. Из этого времени 1 / 5 приходится на малый круг кровообращения и 4 / 5 - на большой.

Существует ряд методов, с помощью которых определяют время кругооборота крови. Принцип этих методов состоит в том, что в вену вводят какое-либо вещество, не встречающееся обычно в организме, и определяют, через какой промежуток времени оно появляется в одноименной вене другой стороны или вызывает характерное для него действие.

В настоящее время для определения времени кругооборота крови используют радиоактивный метод. В локтевую вену одной руки вводят радиоактивный изотоп, например 24 Na, на другой же руке специальным счетчиком регистрируют появление его в крови.

Время кругооборота крови при нарушениях деятельности сердечно-сосудистой системы может существенно изменяться. У больных с тяжелыми заболеваниями сердца время кругооборота крови может увеличиваться до 1 мин.

Движение крови в различных отделах системы кровообращения характеризуется двумя показателями - объемной и линейной скоростью кровотока.

Объемная скорость кровотока одинакова в поперечном сечении любого участка сердечно-сосудистой системы. Объемная скорость в аорте равна количеству крови, выбрасываемой сердцем в единицу времени, т. е. минутному объему крови. Такое же количество крови поступает к сердцу по полым венам в 1 мин. Одинакова объемная скорость крови, притекающей и оттекающей от органа.

На объемную скорость кровотока оказывают влияние в первую очередь разность давлений в артериальной и венозной системах и сопротивление сосудов. Повышение артериального и снижение венозного давления обусловливает увеличение разности давлений в артериальной и венозной системах, что приводит к нарастанию скорости кровотока в сосудах. Снижение артериального и повышение венозного давления влечет за собой уменьшение разности давлений в артериальной и венозной системах. При этом наблюдается уменьшение объемной скорости кровотока в сосудах.

На величину сопротивления сосудов оказывает влияние ряд факторов: радиус сосудов, их длина, вязкость крови.

Линейная скорость кровотока - это путь, пройденный в единицу времени каждой частицей крови. Линейная скорость кровотока в отличие от объемной неодинакова в разных сосудистых областях. Линейная скорость кровотока наибольшая в артериях и наименьшая в капиллярах. Следовательно, линейная скорость кровотока обратно пропорциональна суммарной площади поперечного сечения сосудов.

В потоке крови скорость отдельных частиц различна. В крупных сосудах линейная скорость максимальна для частиц, движущихся по оси сосуда, минимальна для пристеночных слоев.

В состоянии относительного покоя организма линейная скорость кровотока в аорте составляет 0,5 м/с. В период двигательной активности организма она может достигать 2,5 м/с. По мере разветвления сосудов ток крови в каждой веточке замедляется. В капиллярах он равен 0,0005 м/с (0,5 мм/с), что в 1000 раз меньше, чем в аорте. Замедление кровотока в капиллярах облегчает обмен веществ между тканями и кровью. В крупных венах линейная скорость тока крови увеличивается, так как уменьшается площадь сосудистого сечения. Однако она никогда не достигает скорости тока крови в аорте. Величина кровотока в разных органах различна. Она зависит от васкуляризации органа и уровня его активности (табл. 4).



Таблица 4. Величина кровотока в разных органах на 0,1 кг их массы

Часть II. Физиология сосудистого русла

1. Краткая характеристика основных гемодинамических показателей

Гемодинамика представляет собой раздел физиологии, изучающий закономерности движения крови в сосудистой системе. Она является составной частью гидродинамики – раздела физики, исследующего законы движения жидкости по трубам.

Ключевыми гемодинамическими параметрами, во многом характеризующими интенсивность сердечной деятельности и функциональное состояние сосудистого русла являются следующие:

Ø минутный объем кровотока (или минутный объем сердца, подробно рассмотрен в части I) – количество крови, выбрасываемое одним из желудочков сердца за 1 минуту; этот же объем протекает через суммарное поперечное сечение любого участка большого или малого круга кровообращения за 1 минуту. Минутный объем, с одной стороны, определяется как произведение систолического объема на частоту сердечных сокращений (т.е. на количество таких систол, произведенных за минуту). С другой стороны, минутный объем кровотока можно определить, исходя из основного уравнения гидродинамики (1)

где Q – количество жидкости, протекающее через поперечное сечение трубки в единицу времени,

Р 1 и Р 2 – давление в начале и в конце трубки, соответственно разница между этим давлениями (т.н. градиент давления по ходу трубки) является той силой, которая способствует продвижению жидкости в трубке

R – сопротивление движению жидкости, представляет собой силу, препятствующую продвижению жидкости

Если применить данное уравнение к большому кругу кровообращения, то Р 1 и Р 2 – это будет соответственно давление в устье аорты и в области синусов полых вен (мест впадения полых вен в сердце), Q – минутный объем кровотока, а R – суммарное периферическое сопротивление движению крови. Поскольку давление в области синусов полых вен почти равно нулю, то основное уравнение гидродинамики для сердечно-сосудистой системы (в частности, для большого круга кровообращения) будет выглядеть следующим образом:

где АД – артериальное давление в аорте

R – суммарное периферическое сопротивление движению крови в большом круге кровообращения

МО – минутный объем кровотока в большом круге кровообращения (т.е. то количество крови, которое выбрасывается левым желудочком за 1 минуту, оно же пересекает любое суммарное поперечное сечение большого круга кровообращения за 1 минуту)

Рис. 15. Распределение минутного объема крови в различных отделах большого круга кровообращения

Ø периферическое сосудистое сопротивление – это суммарное сопротивление, создаваемое сосудистым руслом (большого или малого круга кровообращения) движению крови. Сопротивление, создаваемое каждым в отдельности сосудом (подобно сопротивлению, создаваемому какой-то трубкой) можно рассчитать по формуле Пуазейля (3):

где R – сопротивление движению крови

l – длина сосуда

n - вязкость крови, протекающей по сосуду

r – радиус сосуда.

Из данного уравнения следует, что сопротивление движению крови будет тем больше, чем меньше внутренний диаметр сосуда и чем больше его длина и вязкость крови, протекающей по нему.

При движении крови вдоль сосуда в центре потока движутся в основном форменные элементы (осевой ток), а вдоль стенки сосуда – плазма (пристеночный ток). Следовательно, вязкость крови, составляющей осевой ток, будет гораздо выше, чем таковая пристеночного тока. Вместе с тем в большинстве сосудов (за исключением капилляров) выражены и осевой и пристеночный токи, в связи с чем суммарная вязкость крови от сосуда к сосуду не изменяется. И только в капиллярах, отличающихся самым малым диаметром (5-7 мкм) резко сокращается доля осевого тока, что обуславливает уменьшение вязкости крови, заполняющей капилляры.

Самыми узкими сосудами в сосудистом русле являются капилляры. Именно поэтому сопротивление, создаваемое каждым в отдельности капилляром, больше такового создаваемого каждым в отдельности каким-либо другим более крупным сосудом (артериолой, венулой или мелкой артерией).

Вместе с тем суммарное сопротивление, создаваемое какими-то участками сосудистого русла, зависит не только от диаметра просвета сосудов, образующих этот участок, но и от способа их соединения. Известно, что при последовательном подключении трубок суммарное сопротивление движению, создаваемое ими, определяется как сумма сопротивлений каждой в отдельности трубки:

R последовательное = R 1 +R 2 +R 3 +………………+R n + и т.д., (4)

где R последовательное – суммарное периферическое сопротивление, создаваемое группой последовательно соединенных трубок,

В случае параллельного соединения трубок суммарное сопротивление, создаваемое ими, определяется следующим образом:

R параллельное =и т.д. (5)

где R параллельное – суммарное периферическое сопротивление, создаваемое группой параллельно соединенных трубок,

R 1 , R 2 , R 3 и т.д. – соответственно сопротивления движению, создаваемые каждой в отдельности трубкой.

Следовательно, суммарное сопротивление движению, создаваемое определенной группой трубок, будет выше при последовательном их соединении и меньше в случае параллельного их соединения.

Капилляры, хотя и обладают минимальным диаметром по сравнению с другими типами сосудов, и каждый в отдельности из них создает максимальное сопротивление движению жидкости, все же по причине преимущественно параллельного их подключения суммарное сопротивление, создаваемое капиллярами меньше такового, создаваемого артериолами (более крупные сосуды (d=15-70 мкм), включенные в цепь движения крови в большей степени последовательно, чем параллельно). В связи с тем, что артериолы создают в своей совокупности наибольшее сопротивление движению крови, их называют резистивными сосудами или сосудами сопротивления . Кроме того, благодаря наличию гладкомышечных волокон в составе своей стенки, артериолы, в отличие от капилляров, способны активно изменять величину своего просвета, а, следовательно, и сопротивление движению крови. Наконец, в связи с тем, что от артериол отходят капиллярные сети, именно просвет артериол (а следовательно, и их пропускная способность) является определяющим фактором кровенаполнения капилляров и уровня кровоснабжения каждого конкретного участка ткани. В связи с тем, что от внутреннего просвета артериол в конечном итоге зависит интенсивность кровоснабжения органов, им отводят роль своеобразных кранов в сердечно-сосудистой системе, делающих возможным реализацию перераспределительного механизма в сосудистом русле (пререраспределения крови между органами, работающими с различной интенсивностью). Так, минутный объем кровотока постоянно перераспределяется между различными органами: артериолы интенсивно функционирующих органов расширяются, в результате чего в их капиллярное русло притекает гораздо больше крови, чем в покое, а артериолы покоящихся или работающих с низкой интенсивностью органов, наоборот, суживаются, вследствие чего уменьшается и уровень их кровоснабжения. Общая протяженность всего сосудистого русла человека составляет около 100 тысяч километров, а объем периферической крови (т.е. крови, находящейся в циркуляции) не превышает 5-10 л (8-10% от массы тела человека). В связи с этим нормально кровоснабжаются в каждый данный момент лишь жизненно важные и интенсивно работающие органы, тогда как большая часть сосудистого русла пустует.

Ø кровяное давление – это суммарный запас энергии, которым обладает движущаяся кровь в определенном участке сосудистого русла. Этот суммарный запас энергии сообщается крови в результате работы сердца. Различают артериальное, капиллярное и венозное давление. В связи с тем, что кровь при своем движении преодолевает силы сопротивления движению (прежде всего трение о стенку сосуда), кровяное давление по ходу сосудистого русла снижается. Так, максимальным оно является в сосудах, выносящих кровь из сердца (в аорте и легочном стволе), а минимальным (близким, но неравным нулю) – в сосудах, возвращающих кровь в сердце (в полых и легочных венах). Таким образом, чем дальше удалилась кровь от сердца как насоса (т.е. чем больший путь она прошла по сосудистому руслу), тем меньшим запасом суммарной энергии она обладает (т.е. тем ниже кровяное давление в данном участке сосудистого русла).

В начальной части сосудистого русла (в крупных, средних и даже некоторых мелких артериях) кровяное давление зависит от фазы сердечного цикла: в момент систолы, когда желудочками изгоняются порции крови, оно возрастает, а в момент диастолы – напротив, понижается. В мелких же артериях, артериолах, капиллярах, венулах и венах кровяное давление не зависит от фаз сердечного цикла, оно уменьшается по ходу сосудистого русла, но в каждом данном его участке является постоянным, не зависящим от фазы сердечного цикла. Превращению пульсирующего кровотока в постоянный способствуют крупные артерии (сосуды эластического типа) и отчасти средние артерии (сосуды смешанного типа – мышечно-эластического). Благодаря своей эластичности стенки этих артерий в момент систолы желудочков растягиваются, принимая определенное количество крови (при этом давление в них повышается до уровня максимального или систолического), тогда как в момент диастолы – сжимаются, проталкивая принятую из желудочка порцию крови далее (при этом давление в начальном отделе сосудистого русла понижается до уровня минимального или диастолического). Таким образом, пульсирующий кровоток постепенно по ходу сосудистого русла преобразуется в постоянный, а пульсовые колебания артериального давления – гаснут. Постоянное, не зависящее от фаз сердечного цикла, давление в артериолах, капиллярах и венулах, составляющих микроциркуляторное русло (и особенно в капиллярах), является основным залогом нормального осуществления транскапиллярного обмена – того, ради чего существует система кровообращения вообще.

В связи с тем, что давление в артериальной части сосудистого русла колеблется в динамике сердечного цикла, различают следующие его разновидности:

· максимальное или систолическое давление – это давление в начальном отделе сосудистого русла в момент систолы желудочков, оно во многом характеризует насосную функцию сердца (величину систолического выброса) и растяжимость крупных и средних артерий. Различают боковое и конечное систолическое давление. Боковое давление – это давление крови, передаваемое на стенки сосудов. Конечное давление – это суммарный запас потенциальной и кинетической энергии, которым обладает движущаяся кровь на определенном участке сосудистого русла; оно на 10-20 мм.рт.ст. выше бокового. Разность между конечным и боковым систолическим давлением называется ударным давлением, которое во многом отражает интенсивность сердечной деятельности и состояние стенок сосудов. В норме величина систолического давления в плечевой артерии у здоровых молодых людей составляет 110-125 мм.рт.ст., а в легочном стволе – 25мм.рт.ст.

· минимальное или диастолическое давление – это давление в начальном отделе сосудистого русла в момент диастолы желудочков, во многом зависит от периферического сосудистого сопротивления. В норме его величина в плечевой артерии у здоровых молодых людей составляет 60-80 мм.рт.ст., а в легочном стволе – 10 мм.рт.ст.

· среднее артериальное давление – это давление, отражающее энергию движущейся крови, так как если бы она вытекала из сердца не порциями, а непрерывной струей (т.е. без пульсовых колебаний). Иными словами, среднее артериальное давление является равнодействующей артериального давления в разные фазы сердечного цикла и отражает энергию непрерывного движения крови. В связи с тем, что продолжительность понижения диастолического давления больше, чем повышения систолического, среднее артериальное давление ближе к величине диастолического давления и может быть рассчитано по следующей формуле:

АД среднее = 0,42 АД систолическое + 0,58 АД диастолическое (6)

· пульсовое артериальное давление является амплитудой колебаний давления в начальном отделе сосудистого русла, обусловленных периодической насосной деятельностью сердца. Пульсовое артериальное давление определяется как разность между систолическим и диастолическим артериальным давлением и во многом характеризует насосную функцию сердца (зависит от величины систолического выброса)

АД пульсовое = АД систолическое - АД диастолическое (7)

Пульсовые колебания артериального давления в крупных сосудах (т.н. волны первого порядка , самые частые) обусловлены ритмичной периодической работой сердца . Наряду с этими пульсовыми волнами на кривой артериального давления, как правило, наблюдаются еще и дыхательные волны (или волны второго порядка ) – небольшие колебания артериального давления, совпадающие с дыхательными движениями (при вдохе артериальное давление несколько понижается, а при выдохе – наоборот, повышается). Наконец, в некоторых случаях на кривой артериального давления могут появляться волны третьего порядка – самые медленные повышения и понижения артериального давления, каждое из которых охватывает несколько волн второго порядка; эти волны являются следствием периодического изменения тонуса сосудодвигательного центра , вызванного, как правило, недостаточным кровоснабжением мозга кислородом или отравлением его некоторыми ядами.

Рис. 16. Кривые изменения кровяного давления и линейной скорости кровотока в сосудистом русле большого круга кровообращения. Круговая диаграмма отражает изменение суммарного просвета сосудов по ходу сосудистого русла.


Рис. 17. Схема кривой артериального давления

I – волны первого порядка (пульсовые)

II – волны второго порядка (дыхательные)

III – волны третьего порядка

Величину артериального давления можно определить из основного уравнения гемодинамики, преобразованного для большого круга кровообращения (см. уравнение 2):

где АД – кровяное давление в начальной части сосудистого русла

МО – минутный объем крвотока

R – периферическое сосудистое сопротивление.

Из данного выражения следует, что артериальное давление зависит от

ü минутного объема кровотока , а значит, и от интенсивности сердечной деятельности – частоты и силы сердечных сокращений (поскольку МО=СОхЧСС)

ü периферического сосудистого сопротивления , во многом определяемого тонусом (определенной степенью сужения) артериол, вязкостью крови, характером ее движения и некоторыми другими обстоятельствами.

Ø линейная скорость кровотока – это скорость перемещения частиц крови и самой плазмы вдоль продольной оси сосуда. Она определяется следующим образом:

где V – линейная скорость кровотока,

Q – объемная скорость кровотока (соответствующая минутному объему кровотока)

pr 2 – суммарное поперечное определенного участка сосудистого русла

Из данного уравнения следует, что чем шире суммарное поперечное сечение сосудистого русла, тем ниже линейная скорость кровотока в нем. В сосудистой системе самым широким местом является капиллярная сеть: суммарное поперечное сечение всех капилляров большого круга кровообращения в 500-600 раз больше такового аорты. В связи с отмеченным наибольшее замедление движения крови происходит именно на уровне капилляров (линейная скорость кровотока в них составляет всего 0,5- 1 мм/с), тогда как максимальная линейная скорость кровотока отмечается в аорте (0,3-0,5 м/c), а в полых венах – данный показатель (в среднем около 0,2 м/с) в 2 раза ниже такового в аорте, поскольку полых вен две, и минутный объем крови, проходящий через поперечное сечение аорты, распределяется между двумя полыми венами.

Ø время полного кругооборота крови – это время, необходимое для того, что бы частица крови прошла большой и малый круги кровообращения. Оно составляет для человека 20-23 с и соответствует в среднем 27 систолам. Причем 1/5 этого времени приходится на продвижение крови по малому кругу кровообращения и 4/5 – на продвижение по большому.

Ø артериальный пульс – это ритмические колебания стенок артерий, вызванные повышением давления в них (по причине изменения объема крови) при каждой систоле желудочков. Так, в момент систолы желудочков в начальную часть артериальной системы, уже заполненную кровью, выбрасывается определенное дополнительное количество крови (соответствующее систолическому выбросу). В связи с тем, что кровь, как и любая жидкость, является несжимаемой, поступление порции крови в сосудистое русло в момент систолы желудочков сопровождается растяжением крупных артерий и повышением давления в них. После прекращения систолического выброса (т.е. с наступлением диастолы) крупные артерии, принявшие порцию крови из сердца, в силу своей эластичности сжимаются и проталкивают кровь далее. Расширение стенки и повышение давления происходить теперь в соседнем прилежащем участке артериальной части сосудистого русла. Таким образом, колебания давления, вызванные изменением кровенаполнения, волнообразно повторяясь и постепенно ослабевая, захватывают все новые и новые участки артерий, пока не достигнут артериол и капилляров, где пульсовая волна гаснет.

Рис. 18. Механизм распространения пульсовой волны

А – растяжение ближайшего к сердцу участка аорты

Б – растяжение следующего участка и заполнение его кровью

В – повторение этого процесса и распространение крови вдоль эластических артерий

Скорость распространения пульсовой волны не зависит от скорости движения крови, а во многом определяется эластичностью стенок крупных и средних артерий. Так, максимальная линейная скорость кровтока в крупных артериях составляет 0,3-0,5 м/с, а скорость распространения пульсовой волны в них – 5,5-8 м/с. С возрастом эластичность сосудистых стенок вследствие атеросклеротических изменений уменьшается, что обуславливает увеличение скорости распространения пульсовой волны. Частота пульса отражает частоту сердечных сокращений, а его твердость или наполнение – величину систолического выброса.

Различают два основных способа движения крови в сосудистом русле :

ü ламинарный (кровь движется параллельными слоями (или применительно ко всему сосуду при объемном рассмотрении – коаксиальными цилиндрами), которые являются также параллельными продольной оси сосуда), в норме такой тип движения имеет место в абсолютном большинстве сосудов. Причем внутренний или осевой ток составляют форменные элементы крови, движущиеся с наибольшей линейной скоростью, а пристеночный ток – образуют слои плазмы, движущиеся со сравнительно низкой скоростью, поскольку претерпевают наибольшее сопротивление движению в результате трения о стенку сосуда

ü турбулентный (при движении крови в сосуде возникают турбулентные завихрения, поскольку одни ее слои движутся параллельно продольной оси сосуда, а другие – перпендикулярно), в норме встречается в начальном отделе сосудистого русла, куда кровь изгоняется желудочками (в устье аорты и легочного ствола, в области дуги аорты), в местах бифуркации крупных сосудов (например, в месте деления общей сонной артерии на внутреннюю и наружную), а также в местах крутых изгибов сосудов. Вместе с тем при сильном разжижении крови (при выраженном уменьшении ее вязкости) кровоток может приобретать турбулентный характер и в других участках сосудистого русла, где он в норме должен быть ламинарным, и тогда суммарное сопротивление движению крови может возрасти, несмотря на уменьшение вязкости циркулирующей крови.

2. Основные механизмы транскапиллярного обмена

Микроциркуляторное русло и, прежде всего, капилляры являются важным звеном сердечно-сосудистой системы, поскольку именно на их уровне осуществляется обмен веществами между кровью и межклеточной жидкостью (транскапиллярный обмен). Стенка капилляров образована одним слоем эндотелиальных клеток и окружающей их базальной мембраной. В связи с тем, что в стенке капилляров отсутствуют гладкомышечные волокна, они не способны, подобно другим сосудам, активно изменять свой просвет, и степень их кровенаполнения напрямую зависит от тонуса (степени сужения) предшествующих артериол. Все капилляры по своему ходу обязательно сопровождаются рыхлой волокнистой соединительной тканью , которая является главным посредником гематотканевых отношений , поскольку представляет собой промежуточное звено на пути веществ из других тканей (эпителиальные, хрящевые, нервная, мышечная) в кровь и в обратном направлении. Средняя линейная скорость кровотока в капиллярах человека составляет 0,5-1 мм/с, а поскольку средняя их длина не превышает 0,5-1 мм, то время нахождения каждой клетки крови в капилляре достигает 1 с. Интенсивность эритроцитарного потока в капиллярах колеблется от 12 до 25 клеток и более в 1 с. Объем крови, заполняющий капилляры, как правило, составляет около 15% от общего объема периферической крови (т.е. крови, находящейся в циркуляции). Кровяное давление в капилляре (гидростатическое давление) не зависит от фаз сердечного цикла (т.е. не претерпевает пульсовых колебаний), но по ходу капилляра снижается (как и в целом по ходу сосудистого русла) в связи с тем, что кровь по мере продвижения затрачивает часть своей энергии на преодоление сил сопротивления движению. Так, в большинстве капилляров большого круга кровообращения (за исключением капилляров почечных клубочков) гидростатическое давление в артериальной части капилляра составляет около 30 мм.рт.ст., а венозной его части – 10 мм.рт.ст.

Процесс фильтрации жидкости из капилляра в межклеточные пространства окружающей рыхлой волокнистой соединительной ткани в артериальной части капилляра и обратной ее реабсорбции в кровь в венозной его части возможен благодаря определенным градиентам гидростатического и онкотического давления между кровью капилляра и межклеточной жидкостью. Так, например, в артериальной части кожных капилляров гидростатическое давление крови составляет 30 мм.рт.ст., а гидростатическое давление межклеточной жидкости – 15-20 мм.рт.ст. Следовательно, в артериальной части капилляра создается градиент гидростатического давления (равный примерно 10 мм.рт.ст.), способствующий движению жидкой части плазмы (и растворенных в ней низкомолекулярных веществ) из капилляра в межклеточные пространства . В результате такой фильтрации онкотическое давление крови по ходу капилляра повышается , поскольку крупномолекулярные белки, не могущие проникнуть вместе с плазмой из капилляра в ткани, оказываются растворенными в меньшем объеме жидкости. Гидростатическое же давление по ходу капилляра падает и у венозного его конца составляет 10 мм.рт.ст., тогда как межклеточной жидкости – 15-20 мм.рт.ст. Таким образом, градиент гидростатического давления в венозной части капилляра будет способствовать обратной реабсорбции жидкости и растворенных в ней веществ (в том числе конечных продуктов метаболизма, каких-то гуморальных факторов и т.д.) из межклеточных пространств в кровь. Облегчает и усиливает процесс реабсорбции и градиент онкотического давления , во многом создаваемый крупномолекулярными белками крови.


Рис. 19. Механизм осуществления транскапиллярного обмена

В нормальных условиях скорость фильтрации жидкости из капилляра в ткани практически равна скорости ее реабсорбции в обратном направлении, и только небольшая часть межклеточной жидкости возвращается в кровеносное русло через посредство лимфатической системы (фильтруется в слепо заканчивающиеся в тканях лимфатические капилляры, которые собираются в более крупные лимфатические сосуды, выносящие лимфу из органов; лимфа проходит через лимфатические узлы, где происходит ее очистка от антигенных субстанций, и возвращается в кровь через два лимфатических протока (правый и грудной лимфатические протоки), впадающих в вены большого круга кровообращения). Средняя скорость фильтрации во всех капиллярах организма человека составляет примерно 14 мл/мин (20 л/сутки), а реабсорбции – 12,5 мл/мин (18 л/сутки); по лимфатическим сосудам оттекает около 2 л/сутки жидкости.

3. Нейрогуморальные механизмы регуляции кровообращения

Механизмы регуляции кровообращения направлены на постоянное достижение четкого соответствия между потребностью каждой клетки организма в уровне кровоснабжения (зависящей от интенсивности обменных процессов в ней) и объемом крови, протекающей через сосуды той структуры, в состав которой входит эта клетка . Немаловажное значение для осуществления транскапиллярного обмена (то, ради чего и существует система кровообращения вообще) имеют не только объем протекающей через капилляры крови, но и уровень капиллярного давления, во многом зависящий от величины системного артериального давления. В связи с этим механизмы регуляции кровообращения направлены и на поддержание системного артериального давления на уровне, оптимальном для нормального осуществления транскапиллярного обмена и течения метаболических процессов в тканях.

Механизмы регуляции кровообращения в зависимости от того, на регуляцию системного или местного кровообращения они направлены, можно классифицировать на две группы :

Ø центральные (направлены на регуляцию системного кровообращения)

Ø местные (обеспечивают регуляцию уровня кровоснабжения определенных органов и тканей организма в зависимости от их потребностей, определяемых уровнем функциональной активности).

Центральные механизмы регуляции кровообращения обеспечивают поддержание на определенном уровне, оптимальном для нормального кровоснабжения периферических тканей (в том числе самого сердца), ряда системных показателей кровообращения , таких как системное артериальное давление, объем циркулирующей крови, суммарное периферическое сопротивление сосудистого русла, минутный объем кровотока и некоторые другие. Центральные механизмы регуляции своей деятельностью создают не только благоприятные условия для работы сердца, но и оптимального кровоснабжения всех тканей организма. Как правило, в реализации этих механизмов принимают участие как нервные, так и эндокринные компоненты, которые тесно переплетаются между собой. Центральные механизмы регуляции могут быть направлены на поддержание на определенном уровне:

ü общего объема крови , находящейся в циркуляции (объема периферической крови)

ü минутного объема кровотока , зависящего от интенсивности сердечной деятельности (в частности, от частоты сердечных сокращений и величины систолического выброса)

ü суммарного периферического сопротивления сосудистого русла , во многом зависящего от тонуса (степени сужения) артериол

ü системного артериального давления , зависящего от минутного объема кровотока и периферического сосудистого сопротивления

В связи с тем, что все эти системные параметры кровообращения взаимосвязаны между собой, центральные механизмы регуляции кровообращения своей деятельностью, включающейся в ответ на изменение какого-то одного из этих параметров, как правило, влияют и на многие другие. Так, нормализация системного артериального давления в случае его повышения может достигаться разными путями:

· изменением сердечной деятельности (в частности ее ослаблением, направленным на уменьшение минутного объема кровотока)

· уменьшением объема циркулирующей крови , как в результате усиления диуреза, так и вследствие усиленного депонирования крови в кровяных депо (селезенка, печень, подкожное сосудистое сплетение и некоторых других)

· снижением суммарного периферического сопротивления кровотоку в результате ослабления тонуса артериол.

Благодаря отмеченной избыточности способов поддержания на оптимальном уровне параметров системного кровообращения достигается высокая биологическая надежность в целом сердечно-сосудистой системы.

Механизмы регуляции сердечной деятельности, в том числе и сердечные рефлексы, возникающие в ответ на повышение артериального давления, рассмотрены в пункте 9 части I. В данном же пункте будут подробно охарактеризованы лишь те механизмы, которые обеспечивают регуляцию объема циркулирующей крови и суммарного периферического сопротивления кровотоку.

Регуляция суммарного периферического сопротивления кровотоку осуществляется преимущественно путем изменения тонуса артериол (сосудов, создающих в своей совокупности максимальное суммарное сопротивление движению крови), которое может достигаться в результате как нервных, так и гуморальных влияний . Большинство сосудов сосудистого русла (за исключением разве что капилляров, лишенных гладкомышечных и соединительнотканных компонентов в составе своей стенки) находятся в состоянии постоянного тонуса (т.н. базального тонуса ), обеспечиваемого автоматией некоторых гладкомышечных волокон, входящих в состав сосудистой стенки. Повышению тонуса большинства сосудов (за исключением сосудов сердца и головного мозга) способствуют и симпатические влияния; причем симпатический отдел вегетативной нервной системы оказывает постоянное (тоническое) прессорное влияние на сосуды, тогда как парасимпатический – тоническое влияние на сердце. Устранение симпатических влияний на сосуды тех или иных областей тела (путем перерезки определенных симпатических нервов) приводит к расслаблению гладкой мускулатуры денервированных сосудов, снижению их тонуса и, как следствие, увеличению их кровенаполнения и покраснению денервированных участков тела. Так, Клод Бернар в 1852 г в своем опыте, ставшим классическим, показал, что перерезка симпатического нерва на одной стороне шеи у кролика вызывает расширение сосудов, проявляющейся покраснением и потеплением уха оперированной стороны. В случае раздражения симпатического нерва на шее у кролика, напротив, наблюдается сужение сосудов уха на стороне раздражения и, как следствие, ухо бледнеет, и температура его понижается. Парасимпатический отдел вегетативной нервной системы в отличие от симпатического, напротив, оказывает сосудорасширяющее (депрессорное) действие, не носящее тонический характер.

Сосудодвигательный центр (открыт В.Ф. Овсянниковым в 1971 г), имеющий отношение к регуляции активности собственно симпатических и парасимпатических эфферентных нейронов, иннервирующих сосуды, заложен в продолговатом мозге (в области ромбовидной ямки и образован нейронами ретикулярной формации) и состоит из двух отделов:

ü прессорного (сосудосуживающего, реализует свои влияния на сосуды через посредство симпатических центров, заложенных в боковых рогах грудных сегментов спинного мозга)

ü депрессорного (сосудорасширяющего, реализует свои влияния на сосуды преимущественно через посредство парасимпатических центров, заложенных в стволе головного мозга и сакральных сегментах спинного мозга; сосудорасширяющее действие могут оказывать и некоторые симпатические нервы преимущественно на те сосуды, в гладкомышечных волокнах которых преобладают b 2 -адренорецепторы).

Оба эти отдела сосудодвигательного центра находятся в реципрокных отношениях: повышение активности какого-то одного отдела сопровождается угнетением активности другого. Причем, как правило, прессорный отдел находится в состоянии тонической активности, в связи с чем симпатический отдел вегетативной нервной системы оказывает тоническое прессорное влияние на сосуды. Поддержание тонической активности сосудодвигательного центра обеспечивается как постоянным притоком афферентной информации к нему от различных рецептивных полей организма (и прежде всего, рецепторов самих сосудов), так и благодаря некоторым гуморальным факторам, циркулирующим к крови (ионы водорода, СО 2 , лактат, АДФ и другие). Так, резкое падение артериального давления в сосудистом русле сопровождается значительным ослаблением афферентной импульсации от прессорецептров (барорецептров) как крупных сосудов (дуга аорты и каротидный синус – место бифуркации общей сонной артерии на внутреннюю и наружную сонные артерии; это две самые главные сосудистые рефлексогенные области), так и множества мелких сосудов, что приводит к повышению тонуса прессорного отдела и ослаблению тонуса депрессорного и, как следствие этого, генерализованному сужению артериол, повышению сосудистого сопротивления и системного артериального давления. Одновременно угнетаются парасимпатические и усиливаются симпатические влияния на сердце, что способствует интенсификации сердечной деятельности, увеличению минутного объема кровотока и, как следствие, повышению артериального давления.

Повышение артериального давления, напротив, сопровождается усилением афферентной импульсации от прессорецептров сосудистого русла , повышением активности депрессорного отдела сосудодвигательного центра, ослаблением симпатических и усилением парасимпатических влияний на артериолы, приводящих к понижению периферического сосудистого сопротивления и артериального давления (депрессорные рефлексы ). Параллельно с механизмами, направленными на снижение сосудистого сопротивления при повышенном артериальном давлении, включаются и механизмы, ослабляющие сердечную деятельность, что способствует снижению минутного объема кровотока и артериального давления.

Описанные механизмы регуляции артериального давления, запускаемые потоком афферентной информации от прессорецепторов сосудистого русла, относятся к механизмам регуляции по рассогласованию (или на выходе ) из системы. Они способны вернуть к норме уже измененное артериальное давление, но не способны заранее предотвратить его изменение. Наряду с этими механизмами регуляции в организме срабатывают и другие, предполагающие регуляцию артериального давления еще до момента его резкого изменения (регуляция на входе или по возмущению ). Такие механизмы срабатывают в ответ на раздражение рецепторов растяжения камер сердца и коронарных сосудов большим объемом заполняющей их крови и состоят в рефлекторном угнетении сердечной деятельности и некотором уменьшении сосудистого тонуса, способствующих удержанию артериального давления на нормальном уровне (т.е. препятствуют его возможному повышению).

Важную роль в регуляции сосудистого тонуса и артериального давления, наряду с прессорецепторами сосудистого русла, играют и хеморецепторы , адекватными раздражителями для которых являются повышенное содержание СО 2 , бикарбонатов, ионов водорода, кислых продуктов метаболизма и пониженное содержание кислорода в периферической крови. Возбуждение хеморецепторов, в отличие от возбуждения прессорецепторов, напротив, сопровождается усилением сердечной деятельности и повышением сосудистого тонуса, приводящим к повышению системного артериального давления (прессорные рефлексы ). Физиологическое значение таких прессорных рефлексов, возникающих в ответ на раздражение хеморецепторов сосудистого русла, состоит в том, что они способствуют улучшению кровоснабжения наиболее интенсивно работающих органов (т.е. увеличению объема доставляемой к ним крови в единицу времени) на фоне пониженного содержания кислорода в периферической крови.

Изменение сосудистого тонуса и, как следствие, артериального давления может возникать не только в ответ на раздражение рецепторов самой сердечно-сосудистой системы, но и на раздражение рецепторов других областей организма (т.н. сопряженные рефлексы). Так, болевое или холодовое раздражение большого участка кожи приводит, как правило, к активации симпатического отдела нервной системы, повышению сосудистого сопротивления и артериального давления.

Наряду с нервными механизмами регуляции сосудистого тонуса, носящими, как правило, рефлекторный характер, немаловажное значение имеют и гуморальные механизмы . Причем сосудосуживающим действием обладают следующие гормоны:

ü серотонин (гормон эпифиза, медиатор центральной нервной системы),

ü вазопрессин (или антидиуретический гормон , продуцируется нейросекреторными ядрами переднего гипоталамуса, переходит в общий кровоток на уровне нейрогипофиза), оказывает прессорное действие в сверхфизиологических дозах

ü катехоламины (адреналин и норадареналин – гормоны мозгового вещества надпочечников), через посредство a 1 -адренорецепторов, преобладающих в сосудах органов брюшной полости и кожи, оказывают сосудосуживающее действие, тогда как через посредство b 2 -адренорецепторов, преобладающих в сосудах сердца и головного мозга, напротив – сосудорасширяющее. В целом же катехоламины вызывают увеличение суммарного сосудистого сопротивления и артериального давления

ü ренин-ангиотензиновая система . Эндокринными клетками почек, окружающими в виде небольших скоплений приносящие артериолы клубочков нефронов, синтезируется ренин – протеолитичесикй фермент, который способствует превращению ангиотензиногена (белка плазмы крови) в ангитензин I . Ангиотензин I под действием фермента плазмы (дипептидкарбоксипептидазы) превращается в ангиотензин II , обладающий сильным сосудосуживающим действием. Кроме того, ангиотензин II оказывает и стимулирующее влияние на секреторную активность клубочковой зоны коры надпочечников, продуцирующей минералокортикоиды, которые, обладая антидиуретическим действием, способствуют увеличению объема циркулирующей крови и, как следствие, артериального давления. Несмотря на то, что ренин-ангиотензиновая система имеет отношение к регуляции системного кровообращения и артериального давления, главное ее назначение состоит в регуляции почечного кровотока, являющегося залогом нормальной почечной фильтрации (главного механизма мочеобразования).

Среди гуморальных факторов, оказывающих сосудорасширяющее действие , необходимо назвать следующие:

ü медуллин (липид, продуцируемый эндокринными клетками мозгового вещества почки)

ü ацетилхолин (медиатор парасимпатического отдела вегетативной нервной системы, а также ряда нейронов центральной нервной системы)

ü простагландины (производные ненасыщенных жирных кислот, образующиеся во многих тканях организма)

ü брадикинин (образуется во многих тканях под действием тканевого фермента калликреина из глобулина плазмы крови)

ü гистамин (наряду с эндокринными клетками желудочно-кишечного тракта, выделяется и тучными клетками и базофилами в результате их дегрануляции); введенный в системный кровоток, гистамин вызывает генерализованное расширение артериол и связанное с этим увеличение кровенаполнения капилляров и резкое снижение артериального давления, сопровождающееся нарушением транскапиллярного обмена и нормального метаболизма во многих тканях организма (и, прежде всего, в нервной). Кроме того, гистамин нарушает контакты между эндотелиальными клетками, увеличивая тем самым проницаемость капилляров. Совокупность перечисленных изменений в организме объединяется под названием шок (в частности, гистаминовый шок , поскольку вызван гистамином)

ü местное сосудорасширяющее действие оказывают конечные продукты метаболизма, лактат, накопление в тканях Н + -ионов, АДФ, АМФ , тогда как, поступая в общий кровоток эти вещества возбуждают хеморецепторы сосудистого русла, что сопровождается повышением системного артериального давления.

В регуляции объема циркулирующей крови первостепенную роль играют гуморальные механизмы. Так, резкое снижение объема циркулирующей крови в результате сильной кровопотери, наряду с нейрогуморальными механизмами, способствующими повышению сосудистого тонуса, сопровождается и комплексом процессов, неправленых на увеличение объема циркулирующей крови, среди которых необходимо назвать следующие:

ü выход крови в циркуляцию из кровяных депо (реализуется в основном за счет нервных влияний на органы-депо крови)

ü усиленная секреция вазопрессина (антидиуретического гормона), увеличивающего обратную реабсорбцию воды в канальцах нефронов и собирательных трубочках почек, что уменьшает диурез и способствует сохранению жидкости в организме

ü усиленная секреция ренина почками и связанное с ним образование ангиотензина II, который, с одной стороны, оказывает прессорное действие на сосуды, а с другой – способствует усилению секреции минералокортикоидов клубочковой зоной коры надпочечников. Минералокортикоиды же усиливают обратную реабсорбцию ионов натрия, хлора и вслед за ними воды из первичной мочи, уменьшая тем самым диурез и способствуя увеличению объема циркулирующей крови.

Местные механизмы регуляции кровообращения направлены на достижение адекватного потребностям периферических тканей уровня их кровоснабжения. В основе этих механизмов лежат преимущественно гуморальные механизмы регуляции . Так, повышение температуры (в связи с высоким уровнем обменных процессов), концентрации кислых продуктов метаболизма, СО 2 , АДФ и АМФ (в связи с усиленным расходом АТФ), осмотического давления (вследствие увеличения концентрации низкомолекулярных веществ) в усиленно работающем органе оказывают местное сосудорасширяющее действие. Вместе с тем, поступая в общий кровоток, эти вещества как через посредство раздражения хеморецепторов сосудистого русла, так и непосредственно действуя на сосудодвигательный центр, способствуют интенсификации сердечной деятельности, повышению системного сосудистого сопротивления и артериального давления. Увеличение же минутного объема кровотока, с одной стороны, на фоне сужения сосудов органов, проявляющих слабую активность, и расширения сосудов усиленно работающих органов, с другой, обеспечивает высокий уровень кровоснабжения последних. Следовательно, в случае усиленной работы каких-то органов, во-первых, повышается минутный объем кровотока и артериальное давление , а во-вторых, включается перераспределительный механизм , способствующий поступлению как можно большего количества крови из этого возросшего минутного объема к органам с высоким уровнем функциональной активности.